European Journal of Chemistry

Evaluation of global hardness of atoms based on the commonality in the basic philosophy of the origin and the operational significance of the electronegativity and the hardness. Part I. The Gordy’s scale of electronegativity and the G.H.



Main Article Content

Nazmul Islam
Dulal C. Ghosh

Abstract

Relying upon the fact that the hardness, like the electronegativity, is a qualitative property and there is commonality in the basic philosophy of the origin and the operational significance of these two fundamental descriptors of atoms in physics and chemistry, we have proposed to use the Gordy's ansatz, modified by Ghosh and Chakraborty, of evaluating electronegativity of atoms as the ansatz of measuring the global hardness of atoms in this work. The ansatz under reference computes the energy of attraction between the screened nucleus of the atoms and its valence electrons. This is our definition of electronegativity and global hardness of atoms. The evaluated new set of global hardness is found to satisfy the sine qua non of a reasonable scale of hardness by exhibiting perfect periodicity of periods and groups and correlating the gross physico-chemical properties of elements. The inertness of Hg and extreme reactivity of Cs and Fr atoms are nicely correlated. The chemical reactivity and its variation in small steps in the series of lanthanide elements are also nicely reproduced. The results of the present semi-empirical calculation find strong correlation with the results of some sophisticated DFT calculations for a set of atoms.

1_2_83_89_800


icon graph This Abstract was viewed 2393 times | icon graph Article PDF downloaded 2063 times

How to Cite
(1)
Islam, N.; Ghosh, D. C. Evaluation of Global Hardness of Atoms Based on the Commonality in the Basic Philosophy of the Origin and the Operational Significance of the Electronegativity and the Hardness. Part I. The Gordy’s Scale of Electronegativity and the G.H. Eur. J. Chem. 2010, 1, 83-89.

Article Details

Author Biography

Nazmul Islam, Department of Chemistry, University of Kalyani, Kalyani-741235, India

Snr Research scholar,Department of Chemistry
University of Kalyani
Kalyani-741235
India

Faculty of GERF(POST GRADUATE CENTRE)

University of Mysore

Share
Crossref - Scopus - Google - European PMC
References

[1]. Gilman, J. J. Mat. Res. Innovat. 1997, 1, 71-76.
doi:10.1007/s100190050023

[2]. Pearson, R. G, J. Am. Chem. Soc. 1963, 85, 3533-3539
doi:10.1021/ja00905a001

[3]. Pearson, R. G, Science 1966, 151, 172- 177.
doi:10.1126/science.151.3707.172
PMid:17746330

[4]. Ghosh, D. C.; Islam, N., Int. J. Quantum Chem. 2009, DOI: 10.1002/qua.22415 [Early view].

[5]. Pearson, R. G. J. Chem. Educ. 1999, 76, 267-274.
doi:10.1021/ed076p267

[6]. Pearson, R. G. J. Phys. Chem., 1994, 98, 1989-1992.
doi:10.1021/j100058a044

[7]. Nalewajski, R. F., J. Chem. Phys. 1983, 78, 6112-6120.
doi:10.1063/1.444573

[8]. Yang, W.; Parr, R. G. Uytterhoeven, L. Phys. Chem. Miner. 1987, 15, 191-201.
doi:10.1007/BF00308783

[9]. Ayers P. W.; Yang, W. “Density Functional Theory”, in Computational Medicinal Chemistry for Drug Discovery, Bultinck, P.; Winter, H. D.; Langenaeker, W.; Tollenaere, J. Eds., New York, Dekker, 2003, 571-616.

[10]. Pritchard H. O.; Skinner, H. A. Chem. Rev. 1955, 55, 745-786.
doi:10.1021/cr50004a005

[11]. Ghosh, D. C. J. Indian Chem. Soc. 2003, 80, 527-533.

[12]. Coulson, C. A. Proc. R. Soc. London Ser. A 1951, 207, 63-73.
doi:10.1098/rspa.1951.0099

[13]. Fukui, K. Science 1982, 218, 747-754.
doi:10.1126/science.218.4574.747
PMid:17771019

[14]. Lackner K. S.; Zweig, G. Phys. Rev. D 1983, 28, 1671-1691.
doi:10.1103/PhysRevD.28.1671

[15]. Klopman, G., J. Am. Chem. Soc. 1964, 86, 1463-1469
doi:10.1021/ja01062a001

[16]. Klopman, G, J. Am. Chem. Soc. 1968, 90, 223-234.
doi:10.1021/ja01004a002

[17]. Chermette, H. J. Comput. Chem. 1999, 20, 129-154.
doi:10.1002/(SICI)1096-987X(19990115)20:1<129::AID-JCC13>3.0.CO;2-A

[18]. Parr R. G.; Yang, W. T. Annu. Rev. Phys. Chem. 1995, 46, 701-728.
doi:10.1146/annurev.pc.46.100195.003413

[19]. Gazquez, J. L. J. Mex. Chem. Soc. 2008, 52, 3-10.

[20]. Ayers, P. W.; Anderson, J. S. M; Bartolotti, L. J. Int. J. Quantum Chem. 2005, 101, 520-534.
doi:10.1002/qua.20307

[21]. Liu, S. B. Acta Phy. Chim. Sinica 2009, 25, 590-600.

[22]. Chattaraj, P. K.; Sarkar, U.; Roy, D. R. Chem. Rev. 2006, 106, 2065-2091.
doi:10.1021/cr040109f
PMid:16771443

[23]. Geerlings, P; Proft. F. D; Langenaeker, W. Chem. Rev. 2003, 103, 1793-1874
doi:10.1021/cr990029p
PMid:12744694

[24]. Pearson, R. G. J. Chem. Edu. 1987, 64, 561-567.
doi:10.1021/ed064p561

[25]. Pearson, R. G. Acc. Chem. Res. 1993, 26, 250-255.
doi:10.1021/ar00029a004

[26]. Chattaraj, P. K., Sengupta, S. J. Phys. Chem. 1996, 100, 16126-16130.
doi:10.1021/jp961096f

[27]. Zhou Z.; Parr, R. G. J. Am. Chem. Soc. 1989, 111, 7371-7379.
doi:10.1021/ja00201a014

[28]. Parr R. G.; Chattaraj, P.K. J. Am. Chem. Soc. 1991, 113, 1854-1855.
doi:10.1021/ja00005a072

[29]. Chattaraj P. K.; Nath S.; Sannigrahi, A. B. J. Phys. Chem. 1994, 98, 9143-9145.
doi:10.1021/j100088a009

[30]. Pearson, R. G.; Palke, W. E. J. Phys. Chem. 1992, 96, 3283-3285.
doi:10.1021/j100187a020

[31]. Pal, S.; Vaval N.; Roy, R. J. Phys. Chem. 1993, 97, 4404-4406.
doi:10.1021/j100119a025

[32]. Chattaraj, P. K.; Liu G. H.; Parr, R. G. Chem. Phys. Lett. 1995, 237, 171-176.
doi:10.1016/0009-2614(95)00280-H

[33]. Ayers P. W.; Parr, R. G. J. Am. Chem. Soc. 2000, 122, 2010-2018.
doi:10.1021/ja9924039

[34]. Ghosh, D. C.; Jana, J. Bhattacharyya, S, Int. J. Quantum Chem. 2002, 87, 111-134.
doi:10.1002/qua.10087

[35]. Putz, M.V. Int. J. Quantum Chem. 2009, 109, 733-738.
doi:10.1002/qua.21957

[36]. Frenking G.; Krapp, A. J. Comput. Chem. 2007, 28, 15-24.
doi:10.1002/jcc.20543
PMid:17109434

[37]. Parr,R.G; Ayers, P W.; Nalewajski R. F.; J. Phys. Chem. A, 2005, 109, 3957-3959.
doi:10.1021/jp0404596
PMid:16833715

[38]. Ayers, P. W. Faraday Discuss, 2007, 135, 161-190.
doi:10.1039/b606877d
PMid:17328428

[39]. Gyftpoulous, E. P.; Hatsopoulos, G. N. Proc. Natl. Acad. Sc. 1968, 60, 786-793.
doi:10.1073/pnas.60.3.786

[40]. Iczkowski, R. P.; Margrave, J. L. J. Am. Chem. Soc. 1961, 83, 3547-3551.
doi:10.1021/ja01478a001

[41]. Parr, R. G.; Donnelly, R. A.; Levy, M.; Palke, W. E. J. Chem. Phys. 1978, 68, 3801-3807.

[42]. Parr, R. G.; Pearson, R. G. J. Am. Chem. Soc. 1983, 105, 7512-7516
doi:10.1021/ja00364a005

[43]. Pearson, R. G. Proc. Natl. Acad. Sci. 1986, 83, 8440-8441.
doi:10.1073/pnas.83.22.8440

[44]. Sen K. D.; Vinayagam, S. C. Chem. Phys. Let. 1988, 144, 178-179.
doi:10.1016/0009-2614(88)87112-4

[45]. Reed, J. L. J. Phys. Chem. A 1997, 101, 7396-7400.
doi:10.1021/jp9711050

[46]. Ghosh, D. C.; Islam, N., Int. J. Quantum Chem. 2009, 109, 110, 1206-1214.

[47]. Ayers, P. W.; Parr, R. G. J. Chem. Phys. 2008, 128, 184108(1)-184108(8).

[48]. Parr, R. G; Bartolotti, L. J. J. Am. Chem. Soc. 1982, 104, 3801-3803.
doi:10.1021/ja00378a004

[49]. Noorizadeh, S; Shakerzadeh, E. J. Phys. Chem. A 2008, 112, 3486-3491.
doi:10.1021/jp709877h
PMid:18331007

[50]. Pearson, R. G. Chem. Commun. 1968, 65-67.
doi:10.1039/c19680000065

[51]. Putz, M. V. Absolute and Chemical Electronegativity and Hardness, Nova Science Publishers, Inc., New York, 2008.

[52]. Putz, M. V.; Russo, N.; Sicilia, E. J. Comput. Chem. 2004, 25, 994-1003.
doi:10.1002/jcc.20027
PMid:15027111

[53]. Putz, M.V. J. Theoret. Comput. Chem. 2007, 6, 33-47.
doi:10.1142/S0219633607002861

[54]. Putz, M.V. MATCH Commun. Math. Comput. Chem. 2008, 60, 845-868.

[55]. March, N. H; White, R. J. J. Phys. B 1972, 5, 466-475.
doi:10.1088/0022-3700/5/3/011

[56]. Li, K.; Wang, X.; Zhang,F.; Xue, D. Phys. Rev. Lett. 2008, 100, 235504(1)- 235504(4).

[57]. Ghosh; D. C.; Islam, N. Int. J. Quantum Chem., 2010, DOI: 10.1002/qua.22500, [Early View].

[58]. Ghosh; D. C.; Islam, N. Int. J. Quantum Chem., 2010, DOI: 10.1002/qua.22651 [Early View].

[59]. Ghosh; D. C.; Islam, N. Int. J. Quantum Chem., 2010, DOI: 10.1002/qua.22499, [Early View].

[60]. Ghosh; D. C.; Islam, N. Int. J. Quantum Chem., 2010 DOI: 10.1002/qua.22508, [Early View].

[61]. Ghosh; D. C.; Islam, N. Int. J. Quantum Chem., 2010, DOI: 10.1002/qua.22653 [Early View].

[62]. Gordy, W. Phys. Rev, 1946, 69, 604-607.
doi:10.1103/PhysRev.69.604

[63]. Ghosh, D. C.; Chakraborty, T. J. Mol. Str.-Theochem. 2009, 906, 87-93.
doi:10.1016/j.theochem.2009.04.007

[64]. Ghosh, D. C; Biswas, R; Chakraborty, T; Islam, N; Rajak, S. K, J. Mol. Str.-Theochem. 2008, 865, 60-67.
doi:10.1016/j.theochem.2008.06.020

[65]. Pearson, R. G. Inorg. Chem. 1988, 27, 734-740.
doi:10.1021/ic00277a030

[66]. Putz, M. V. Int. J. Quantum. Chem. 2006, 106, 361–389.
doi:10.1002/qua.20787

[67]. Robles, J.; Bartolotti, L. J. J. Am. Chem. Soc. 1984, 106, 3723-3727.
doi:10.1021/ja00325a003

Supporting Agencies

TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).