European Journal of Chemistry

Environmentally benign synthesis of substituted iodinated flavones as precursors for prenyl-/geranyl flavones from the corresponding chalcones

Crossmark


Main Article Content

Sumaiya Khan
Umme Aiman Liza
Dipan Banik
Md Aman Ullah Aman
Kamrunnahar Happy
Amit Chandra Arjaya
Mohammad Mamun Hossain

Abstract

Flavones have biological properties because of the existence of oxoheterocyclic ring moieties, and day by day create research interest areas because of their important biological activity. Iodine-substituted flavones were synthesized from the corresponding chalcones through an exhaustive iodination reaction. Generally, it is seen that halogenated flavones show better biological activity. Moreover, the introduction of iodine in the ring moiety facilitates the incorporation of highly active side chains, such as prenyl and geranyl groups through the formation of C-C bonds by numerous coupling reactions such as Sonogashira coupling. To achieve such target molecules, a planned chemical synthesis was conducted. For comparison, microwave irradiation (MWI) and conventional heating (CH) methods were used to synthesize a series of iodine-substituted flavone compounds with different substitutes (4a-d) from their corresponding chalcones (3a-d). Unfortunately, 3e chalcone (1-hydroxynapthalene substituted flavone) did not convert to 4e flavones. In the microwave method, a notable decrease in time required in the reaction and an increase in % yield of the reaction were remarked. Characterization and conformation of all synthesized compounds were done using ultraviolet, infrared, and nuclear magnetic resonance spectroscopy and elemental analysis.


icon graph This Abstract was viewed 122 times | icon graph Article PDF downloaded 42 times

How to Cite
(1)
Khan, S.; Liza, U. A.; Banik, D.; Aman, M. A. U.; Happy , K.; Arjaya, A. C.; Hossain, M. M. Environmentally Benign Synthesis of Substituted Iodinated Flavones As Precursors for Prenyl- Geranyl Flavones from the Corresponding Chalcones. Eur. J. Chem. 2024, 15, 332-337.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Chen, S.; Wang, X.; Cheng, Y.; Gao, H.; Chen, X. A Review of Classification, Biosynthesis, Biological Activities and Potential Applications of Flavonoids. Molecules 2023, 28 (13), 4982.
https://doi.org/10.3390/molecules28134982

[2]. Santos, E. L.; Maia, B. H.; Ferriani, A. P.; Teixeira, S. D. Flavonoids: Classification, Biosynthesis and Chemical Ecology. Flavonoids - Biosynth. Hum. Health 2017, https://doi.org/10.5772/67861.
https://doi.org/10.5772/67861

[3]. Cushnie, T. T.; Lamb, A. J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents 2005, 26 (5), 343-356.
https://doi.org/10.1016/j.ijantimicag.2005.09.002

[4]. Ullah, A.; Munir, S.; Badshah, S. L.; Khan, N.; Ghani, L.; Poulson, B. G.; Emwas, A.; Jaremko, M. Important Flavonoids and Their Role as a Therapeutic Agent. Molecules 2020, 25 (22), 5243.
https://doi.org/10.3390/molecules25225243

[5]. O'Prey, J.; Brown, J.; Fleming, J.; Harrison, P. R. Effects of dietary flavonoids on major signal transduction pathways in human epithelial cells. Biochem. Pharmacol. 2003, 66 (11), 2075-2088.
https://doi.org/10.1016/j.bcp.2003.07.007

[6]. Panche, A. N.; Diwan, A. D.; Chandra, S. R. Flavonoids: an overview. J. Nutr. Sci. 2016, 5, https://doi.org/10.1017/jns.2016.41.
https://doi.org/10.1017/jns.2016.41

[7]. Dias, M. C.; Pinto, D. C.; Silva, A. M. Plant Flavonoids: Chemical Characteristics and Biological Activity. Molecules 2021, 26 (17), 5377.
https://doi.org/10.3390/molecules26175377

[8]. Hollman, P.; Katan, M. Dietary Flavonoids: Intake, Health Effects and Bioavailability. Food Chem. Toxicol. 1999, 37 (9-10), 937-942.
https://doi.org/10.1016/S0278-6915(99)00079-4

[9]. Patel, R. Antioxidant mechanisms of isoflavones in lipid systems: paradoxical effects of peroxyl radical scavenging. Free Radic. Biol. Med. 2001, 31 (12), 1570-1581.
https://doi.org/10.1016/S0891-5849(01)00737-7

[10]. Marini, H.; Minutoli, L.; Polito, F.; Bitto, A.; Altavilla, D.; Atteritano, M.; Gaudio, A.; Mazzaferro, S.; Frisina, A.; Frisina, N.; Lubrano, C.; Bonaiuto, M.; D'Anna, R.; Cannata, M. L.; Corrado, F.; Adamo, E. B.; Wilson, S.; Squadrito, F. Effects of the Phytoestrogen Genistein on Bone Metabolism in Osteopenic Postmenopausal Women. Ann. Intern. Med. 2007, 146 (12), 839-847.
https://doi.org/10.7326/0003-4819-146-12-200706190-00005

[11]. Wangen, K. E. Effects of Soy Isoflavones on Markers of Bone Turnover in Premenopausal and Postmenopausal Women. J. Clin. Endocrinol. Amp. Metab. 2000, 85 (9), 3043-3048.
https://doi.org/10.1210/jc.85.9.3043

[12]. Arjmandi, B. H.; Smith, B. J. Soy isoflavones' osteoprotective role in postmenopausal women: mechanism of action. J. Nutr. Biochem. 2002, 13 (3), 130-137.
https://doi.org/10.1016/S0955-2863(02)00172-9

[13]. Tungmunnithum, D.; Tanaka, N.; Uehara, A.; Iwashina, T. Flavonoids Profile, Taxonomic Data, History of Cosmetic Uses, Anti-Oxidant and Anti-Aging Potential of Alpinia galanga (L.) Willd. Cosmetics 2020, 7 (4), 89.
https://doi.org/10.3390/cosmetics7040089

[14]. Shah, A.; Smith, D. L. Flavonoids in Agriculture: Chemistry and Roles in, Biotic and Abiotic Stress Responses, and Microbial Associations. Agronomy 2020, 10 (8), 1209.
https://doi.org/10.3390/agronomy10081209

[15]. Birt, D. F.; Hendrich, S.; Wang, W. Dietary agents in cancer prevention: flavonoids and isoflavonoids. Pharmacol. Amp. Ther. 2001, 90 (2-3), 157-177.
https://doi.org/10.1016/S0163-7258(01)00137-1

[16]. Lee, S.; Lim, K. C.; Shin, S. Y.; Lee, Y. H. Isoflavone derivatives inhibit NF-κB-dependent transcriptional activity. Bioorg. Amp. Med. Chem. Lett. 2010, 20 (21), 6277-6281.
https://doi.org/10.1016/j.bmcl.2010.08.089

[17]. Rodríguez-García, C.; Sánchez-Quesada, C.; Gaforio, J. J. Dietary Flavonoids as Cancer Chemopreventive Agents: An Updated Review of Human Studies. Antioxidants 2019, 8 (5), 137.
https://doi.org/10.3390/antiox8050137

[18]. Parekh, N.; Garg, A.; Choudhary, R.; Gupta, M.; Kaur, G.; Ramniwas, S.; Shahwan, M.; Tuli, H. S.; Sethi, G. The Role of Natural Flavonoids as Telomerase Inhibitors in Suppressing Cancer Growth. Pharmaceuticals 2023, 16 (4), 605.
https://doi.org/10.3390/ph16040605

[19]. Tsukayama, M.; Wada, H.; Kawamura, Y.; Yamashita, K.; Nishiuchi, M. Regioselective Synthesis of 6-Alkyl- and 6-Prenylpolyhydroxyisoflavones and 6-Alkylcoumaronochromone Derivatives. Chem. Pharm. Bull. 2004, 52 (11), 1285-1289.
https://doi.org/10.1248/cpb.52.1285

[20]. Wu, T.; He, M.; Zang, X.; Zhou, Y.; Qiu, T.; Pan, S.; Xu, X. A structure-activity relationship study of flavonoids as inhibitors of E. coli by membrane interaction effect. Biochim. Biophys. Acta (BBA) - Biomembr. 2013, 1828 (11), 2751-2756.
https://doi.org/10.1016/j.bbamem.2013.07.029

[21]. Karak, P. Biological activities of flavonoids: An overview. Int. J. Pharm. Sci. Res. 2019, 10 (4), 1567-1574. https://ijpsr.com/bft-article/biological-activities-of-flavonoids-an-overview/

[22]. Hossain, M. M.; Kawamura, Y.; Yamashita, K.; Tsukayama, M. Microwave-assisted regioselective synthesis of natural 6-prenylpolyhydroxyisoflavones and their hydrates with hypervalent iodine reagents. Tetrahedron 2006, 62 (36), 8625-8635.
https://doi.org/10.1016/j.tet.2006.06.066

[23]. Rahman, M. S.; Alam, S. S.; Happy, K.; Hossain, M. M.; Islam, M. K.; Biswas, F. B. Eco-friendly and simple synthesis of some non-natural flavones through chalcones. Eur. J. Chem. 2018, 9 (3), 236-240.
https://doi.org/10.5155/eurjchem.9.3.236-240.1732

[24]. Tokuoka, T.; Yamashita, K.; Kawamura, Y.; Tsukayama, M.; M. Hossain, M. Regioselective Synthesis of 6‐Prenylpolyhydroxyisoflavone (Wighteone) and Wighteone Hydrate with Hypervalent Iodine. Synth. Commun. 2006, 36 (9), 1201-1211.
https://doi.org/10.1080/00397910500514121

[25]. Mohammadi Ziarani, G.; Kheilkordi, Z.; Mohajer, F. Recent advances in the application of acetophenone in heterocyclic compounds synthesis. J. Iran Chem. Soc. 2019, 17 (2), 247-282.
https://doi.org/10.1007/s13738-019-01774-4

[26]. Khan, A.; Jain, A.; Solank, M. Synthesis and Biological Evaluation of Newly Synthesized Halogenated Flavones. Orient. J. Chem 2024, 40 (2), 562-568.
https://doi.org/10.13005/ojc/400231

[27]. Kumar, D.; Kaushik, M. K. A Novel Synthesis of 2-Quinolinyl Chromones Using Grinding Technique under Solvent-Free Conditions. Russ J. Org. Chem. 2023, 59 (6), 1059-1063.
https://doi.org/10.1134/S1070428023060131

Supporting Agencies

Jahangirnagar University, Savar, Dhaka-1342, Bangladesh, The Wazed Miah Science Research Center, Jahangirnagar University, Savar, Bangladesh
Most read articles by the same author(s)

Most read articles by the same author(s)

TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

License Terms

by-nc

Copyright © 2025 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).