European Journal of Chemistry

The role of water and iodine in supramolecular assembly of a 2D coordination of benzimidazole derivate: X-ray crystallography and DFT calculations

Crossmark


Main Article Content

Sahajkumar Anilkumar Gandhi
Saurabh Soni
Urmila Patel
Deepali Kotadia

Abstract

To understand the relationships between molecular structure and properties, as well as to validate predictive models, density functional theory (DFT) and experimental characterization of molecules are essential. In this study, we describe the synthesis and crystal structure of the 1,3-dimethyl-3H-benzimidazol-1-ium iodide monohydrate (DBZIW), which crystallizes in a monoclinic system with the space group P21/c, a = 8.9323(4) Å, b = 7.1654(3) Å, c = 17.6425(8) Å, β = 101.432(2)°, V = 1106.78(8) Å3, Z = 4, T = 293(2) K, μ(MoKα) = 2.860 mm-1, Dcalc = 1.753 g/cm3, 9452 reflections measured (4.652° ≤ 2Θ ≤ 55.512°), 2547 unique (Rint = 0.0244, Rsigma = 0.0222) which were used in all calculations. The asymmetric unit comprises a [C9H11N2]+ molecule, an iodine ion (I-), and a water molecule. The B3LYP/6-311++G(d,p)  diffuse function was used to optimize the structures of 1,3-dimethyl-3H-benzimidazol-1-ium (DBZ) and 1,3-dimethyl-3H-benzimidazol-1-ium monohydrate (DBZW), while the structures of 1,3-dimethyl-3H-benzimidazol-1-ium iodine (DBZI) and 1,3-dimethyl-3H-benzimidazol-1-ium iodide monohydrate (DBZIW) were optimized using the B3LYP/Def2-TZVP method due to the presence of the iodine ion. These optimizations were performed using Gaussian09 software, and both models accurately predicted the bond lengths, bond angles, and torsion angles of the molecules. Furthermore, DFT calculations were employed to determine the HOMO-LUMO energy levels, energy gap, softness, hardness, and other quantum chemical parameters. A strong intermolecular hydrogen bond interaction, along with the aromatic ring system and the fusion of benzene and imidazole, constitutes a small but highly significant structure that has been confirmed. The O1 atom of the water molecule and the iodine ion (I-) participate in a significant hydrogen bond interaction (O-H···I) within the molecular packing of DBZIW. Furthermore, the network of C-H···O hydrogen bond contacts plays a crucial role in the stability of the structure. Hirshfeld surface analysis was carried out to identify the various hydrogen bonds. The energy frameworks for the compounds were constructed through based on intermolecular interaction energies to know ascertain dominant interaction energy involved contributing to the strength of the packing. Molecular studies indicated that DBZIW had exhibits high binding affinity for thyroid-stimulating hormone receptor (TSHR) protein targets (4QT5).


icon graph This Abstract was viewed 308 times | icon graph Article PDF downloaded 79 times icon graph Article CIF FILE downloaded 0 times

How to Cite
(1)
Gandhi, S. A.; Soni, S.; Patel, U.; Kotadia , D. The Role of Water and Iodine in Supramolecular Assembly of a 2D Coordination of Benzimidazole Derivate: X-Ray Crystallography and DFT Calculations. Eur. J. Chem. 2025, 16, 7-19.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Ayhan-Kilcigil, G.; Kus, C.; Çoban, T.; Can-Eke, B.; Iscan, M. Synthesis and Antioxidant Properties of Novel Benzimidazole Derivatives. J. Enzyme Inhib. Med. Chem. 2004, 19 (2), 129-135.
https://doi.org/10.1080/1475636042000202017

[2]. Kuş, C.; Sözüdönmez, F.; Can-Eke, B.; Çoban, T. Antioxidant and Antifungal Properties of Benzimidazole Derivatives. Z. für Naturforsch. C 2010, 65 (9-10), 537-542.
https://doi.org/10.1515/znc-2010-9-1002

[3]. Rao, H. S.; Vasantham, K. Nitroketene dithioacetal chemistry: Synthesis of coumarins incorporating nitrothiophene moiety. J. Chem Sci 2011, 123 (4), 411-420.
https://doi.org/10.1007/s12039-011-0102-7

[4]. Ates-Alagoz, Z. Antioxidant Activities of Retinoidal Benzimidazole Or Indole Derivatives in In Vitro Model Systems. CMC. 2013, 20 (36), 4633-4639.
https://doi.org/10.2174/09298673113209990150

[5]. Ayhan‐Kilcigil, G.; Kuş, C.; Çoban, T.; Özdamar, E. D.; Can‐Eke, B. Identification of a Novel Series of N‐Phenyl‐5‐[(2‐phenyl benzimidazol‐1‐yl)methyl]‐1,3,4‐oxadiazol‐2‐amines as Potent Antioxidants and Radical Scavengers. Arch. Pharm. 2014, 347 (4), 276-282.
https://doi.org/10.1002/ardp.201300324

[6]. Cao, Q.; Xie, Z.; Dong, Q.; Ma, Q.; Yue, T.; Wang, L.; Wang, D. Studied on highly sensitive fluorescent sensors for Fe3+, Nitrobenzene and dye adsorption properties of Ln-MOFs based on benzimidazole carboxylic acid ligand. J. Mol. Struct. 2023, 1293, 136246.
https://doi.org/10.1016/j.molstruc.2023.136246

[7]. Sharma, V.; Banerjee, B.; Sharma, A.; Gupta, V. K. Synthesis, X-ray crystal structure, Hirshfeld surface analysis, and molecular docking studies of DMSO/H2O solvate of 5-chlorospiro[indoline-3,7'-pyrano[3,2-c:5,6-c']dichromene]-2,6',8'-trione. Eur. J. Chem. 2021, 12 (4), 382-388.
https://doi.org/10.5155/eurjchem.12.4.382-388.2141

[8]. Adardour, M.; Ait Lahcen, M.; Oubahmane, M.; Ettahiri, W.; Hdoufane, I.; Bouamama, H.; Alanazi, M. M.; Cherqaoui, D.; Taleb, M.; Garcia, E. Z.; Baouid, A. Design, Synthesis, Molecular Modeling and Biological Evaluation of Novel Pyrazole Benzimidazolone Derivatives as Potent Antioxidants. Pharmaceuticals 2023, 16 (12), 1648.
https://doi.org/10.3390/ph16121648

[9]. Ettahiri, W.; Salim, R.; Adardour, M.; Ech-chihbi, E.; Yunusa, I.; Alanazi, M. M.; Lahmidi, S.; Barnossi, A. E.; Merzouki, O.; Iraqi Housseini, A.; Rais, Z.; Baouid, A.; Taleb, M. Synthesis, Characterization, Antibacterial, Antifungal and Anticorrosion Activities of 1,2,4-Triazolo[1,5-a]quinazolinone. Molecules 2023, 28 (14), 5340.
https://doi.org/10.3390/molecules28145340

[10]. Ettahiri, W.; Adardour, M.; Alaoui, S.; Allah, A. E.; Aichouch, M.; Salim, R.; Ramli, Y.; Bouyahya, A.; Taleb, M. Recent advance in the development of N-heterocyclic derivatives as anti-SARS-CoV-2 inhibitors: A review. Phytochem. Lett. 2024, 61, 247-269.
https://doi.org/10.1016/j.phytol.2024.04.016

[11]. Horiuchi, S.; Kagawa, F.; Hatahara, K.; Kobayashi, K.; Kumai, R.; Murakami, Y.; Tokura, Y. Above-room-temperature ferroelectricity and antiferroelectricity in benzimidazoles. Nat Commun 2012, 3 (1), 1308 https://doi.org/10.1038/ncomms2322.
https://doi.org/10.1038/ncomms2322

[12]. Cosby, T.; Holt, A.; Griffin, P. J.; Wang, Y.; Sangoro, J. Proton Transport in Imidazoles: Unraveling the Role of Supramolecular Structure. J. Phys. Chem. Lett. 2015, 6 (19), 3961-3965.
https://doi.org/10.1021/acs.jpclett.5b01887

[13]. Nagamani, C.; Versek, C.; Thorn, M.; Tuominen, M. T.; Thayumanavan, S. Proton conduction in 1H‐1,2,3‐triazole polymers: Imidazole‐like or pyrazole‐like? J. Polym. Sci. A. Polym. Chem. 2010, 48 (9), 1851-1858.
https://doi.org/10.1002/pola.23932

[14]. Kerru, N.; Gummidi, L.; Maddila, S.; Gangu, K. K.; Jonnalagadda, S. B. A Review on Recent Advances in Nitrogen-Containing Molecules and Their Biological Applications. Molecules 2020, 25 (8), 1909.
https://doi.org/10.3390/molecules25081909

[15]. Ettahiri, W.; Adardour, M.; Ech-chihbi, E.; Azam, M.; Salim, R.; Dalbouha, S.; Min, K.; Rais, Z.; Baouid, A.; Taleb, M. 1,2,3-triazolyl-linked benzimidazolone derivatives as new eco-friendly corrosion inhibitors for mild steel in 1 M HCl solution: Experimental and computational studies. Colloids Surf. A: Physicochem. Eng. Asp. 2024, 681, 132727.
https://doi.org/10.1016/j.colsurfa.2023.132727

[16]. Ech-chihbi, E.; Adardour, M.; Ettahiri, W.; Salim, R.; Ouakki, M.; Galai, M.; Baouid, A.; Taleb, M. Surface interactions and improved corrosion resistance of mild steel by addition of new triazolyl-benzimidazolone derivatives in acidic environment. J. Mol. Liq. 2023, 387, 122652.
https://doi.org/10.1016/j.molliq.2023.122652

[17]. Salim, R.; Ech-chihbi, E.; Ettahiri, W.; Hammouti, B.; Rais, Z.; Taleb, M. Industrial Corrosion Inhibitors: Food Waste as Ideal Substitutes. Mater. Horiz.: Nat. Nanomater. 2024, 231-266.
https://doi.org/10.1007/978-981-97-1160-4_11

[18]. Ettahiri, W.; Adardour, M.; Ech-chihbi, E.; Dalbouha, S.; Hammouti, B.; Rais, Z.; Baouid, A.; Taleb, M. Regio- and chemoselective synthesis of new isoxazolyl-linked benzimidazolones via 1,3-dipolar cycloaddition: Characterization, corrosion studies, density functional theory, and Monte Carlo simulations. Fuel 2024, 371, 132058.
https://doi.org/10.1016/j.fuel.2024.132058

[19]. Salim, R.; Adardour, M.; Ettahiri, W.; Ech-chihbi, E.; Hammouti, B.; Azam, M.; Min, K.; Baouid, A.; Taleb, M. Computational and electrochemistry of effective triazolyl-benzimidazolone inhibitors in aggressive environment. Sustain. Mater. Technol. 2024, 39, e00862.
https://doi.org/10.1016/j.susmat.2024.e00862

[20]. Aydogdu, I. S.; Gumus, I.; Arslan, H. Hirshfeld surface and theoretical studies of 2,2,2-trichloro-N,N-bis(2-(2,2,2-trichloroacetamido) phenyl)acetamide compound. Eur. J. Chem. 2019, 10 (4), 323-335.
https://doi.org/10.5155/eurjchem.10.4.323-335.1920

[21]. Tanaka, A.; Nakashima, K.; Miura, Y. DFT studies of N-alkoxyaminyl radicals: ESR parameters, UV-vis absorptions and generations. Tetrahedron 2011, 67 (12), 2260-2268.
https://doi.org/10.1016/j.tet.2011.01.079

[22]. Patel, U. H.; Gandhi, S. A.; Barot, V. M.; Patel, M. C. 3-(2-Chloro-3-hydroxy-4-methoxyphenyl)-1-(4,5-dimethoxy-2-methylphenyl)prop-2-en-1-one. Acta Crystallogr E. Struct Rep Online 2012, 68 (10), o2926-o2927.
https://doi.org/10.1107/S1600536812038275

[23]. Malek, T. J.; Gandhi, S. A.; Barot, V.; Patel, M.; Patel, U. H. Crystal structure and Hirshfeld surface analysis of methyl 4-[(E)-2-(5-bromo-2-methoxybenzylidene)hydrazinyl]-3-nitrobenzoate. Acta Crystallogr E. Cryst Commun 2018, 74 (9), 1239-1243.
https://doi.org/10.1107/S2056989018011325

[24]. Patel, U. H.; Gandhi, S. A.; Barot, V. M.; Patel, M. C. Synthesis, Spectroscopic Investigations, Quantum Chemical Studies (Ab-initio & DFT) and Antimicrobial Activities of 3-(3-Chloro-4,5-dimethoxy-phenyl)-1-(4, 5-dimethoxy-2-methyl-Phenyl) prop-2-en-1-one. CSTA. 2013, 02 (04), 167-175.
https://doi.org/10.4236/csta.2013.24023

[25]. Patel, U. H.; Gandhi, S. A.; Barot, V. M.; Patel, M. C. A comparative study of novel chalcone derivative by X-ray and quantum chemical calculations (Ab-initio and DFT): Experimental and theoretical approach. Mol. Cryst. Liq. Cryst. 2016, 624 (1), 190-204.
https://doi.org/10.1080/15421406.2015.1011494

[26]. Gandhi, S. A.; Patel, U. H.; Modh, R. D.; Naliyapara, Y.; Patel, A. S. Quantum Chemical Calculations (Ab Initio & DFT), Hirshfeld Surface Analysis, Crystal Structure and Molecular Docking Study of 2-Chloro-4-(4-fluoro-phenyl)-6-isopropyl-pyrimidine-5-carboxylic Acid Methyl Ester. J. Chem Crystallogr 2016, 46 (10-12), 387-398.
https://doi.org/10.1007/s10870-016-0668-5

[27]. Bruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

[28]. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr C. Struct Chem 2015, 71 (1), 3-8.
https://doi.org/10.1107/S2053229614024218

[29]. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr A. Found Crystallogr 2007, 64 (1), 112-122.
https://doi.org/10.1107/S0108767307043930

[30]. Ditchfield, R.; Hehre, W. J.; Pople, J. A. Self-Consistent Molecular-Orbital Methods. IX. An Extended Gaussian-Type Basis for Molecular-Orbital Studies of Organic Molecules. J. Chem. Phys. 1971, 54 (2), 724-728.
https://doi.org/10.1063/1.1674902

[31]. Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B. 1988, 37 (2), 785-789.
https://doi.org/10.1103/PhysRevB.37.785

[32]. Zhu, Y.; Alqahtani, S.; Hu, X. An Assessment of Dispersion-Corrected DFT Methods for Modeling Nonbonded Interactions in Protein Kinase Inhibitor Complexes. Molecules 2024, 29 (2), 304.
https://doi.org/10.3390/molecules29020304

[33]. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 09, Revision A.02; Gaussian, Inc., Wallingford CT, 2004.

[34]. Dennington, R.; Keith, T. A.; Millam, J. M. GaussView, Version 6, Semichem Inc.; Shawnee Mission, KS, 2016.

[35]. Spackman, P. R.; Turner, M. J.; McKinnon, J. J.; Wolff, S. K.; Grimwood, D. J.; Jayatilaka, D.; Spackman, M. A. CrystalExplorer: a program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. J. Appl Crystallogr 2021, 54 (3), 1006-1011.
https://doi.org/10.1107/S1600576721002910

[36]. Mohabbat, A.; Salama, J.; Seiffert, P.; Boldog, I.; Janiak, C. Single-Crystal Structure Analysis of Dicarboxamides: Impact of Heteroatoms on Hydrogen Bonding of Carboxamide Groups. Crystals 2024, 14 (9), 811.
https://doi.org/10.3390/cryst14090811

[37]. Chen, C.; Hubbard, P. A.; Salazar, L. M.; McLachlan, S. M.; Murali, R.; Rapoport, B. Crystal Structure of a TSH Receptor Monoclonal Antibody: Insight Into Graves' Disease Pathogenesis. Mol. Endocrinol. 2015, 29 (1), 99-107.
https://doi.org/10.1210/me.2014-1257

[38]. Berman, H.; Henrick, K.; Nakamura, H. Announcing the worldwide Protein Data Bank. Nat Struct Mol Biol 2003, 10 (12), 980-980.
https://doi.org/10.1038/nsb1203-980

[39]. Meng, X.; Zhang, H.; Mezei, M.; Cui, M. Molecular Docking: A Powerful Approach for Structure-Based Drug Discovery. CAD. 2011, 7 (2), 146-157.
https://doi.org/10.2174/157340911795677602

[40]. Ghoorah, A. W.; Devignes, M.; Smaïl‐Tabbone, M.; Ritchie, D. W. Protein docking using case‐based reasoning. Proteins 2013, 81 (12), 2150-2158.
https://doi.org/10.1002/prot.24433

[41]. Azgaou, K.; Ettahiri, W.; Ech-chihbi, E.; Adardour, M.; Azam, M.; Benmessaoud, M.; Baouid, A.; Min, K.; El Hajjaji, S. Experimental and computational study of newly synthesized benzimidazole derivatives as corrosion inhibitors for mild steel in 1.0 M HCl: Electrochemical, surface studies, DFT modeling, and MC simulation. J. Electroanal. Chem. 2024, 974, 118699.
https://doi.org/10.1016/j.jelechem.2024.118699

[42]. Guendouz, A.; Ettahiri, W.; Adardour, M.; Lazrak, J.; Assiri, E. H.; Taleb, A.; Hammouti, B.; Rais, Z.; Baouid, A.; Taleb, M. New Benzimidazole derivatives as efficient organic inhibitors of mild steel corrosion in hydrochloric acid medium: Electrochemical, SEM/EDX, MC, and DFT studies. J. Mol. Struct. 2025, 1321, 139901.
https://doi.org/10.1016/j.molstruc.2024.139901

[43]. Miar, M.; Shiroudi, A.; Pourshamsian, K.; Oliaey, A. R.; Hatamjafari, F. Theoretical investigations on the HOMO-LUMO gap and global reactivity descriptor studies, natural bond orbital, and nucleus-independent chemical shifts analyses of 3-phenylbenzo[d]thiazole-2(3H)-imine and its para-substituted derivatives: Solvent and substituent effects. J. Chem. Res. 2020, 45 (1-2), 147-158.
https://doi.org/10.1177/1747519820932091

[44]. Parr, R. G.; Szentpály, L. v.; Liu, S. Electrophilicity Index. J. Am. Chem. Soc. 1999, 121 (9), 1922-1924.
https://doi.org/10.1021/ja983494x

[45]. Parr, R. G.; Pearson, R. G. Absolute hardness: companion parameter to absolute electronegativity. J. Am. Chem. Soc. 1983, 105 (26), 7512-7516.
https://doi.org/10.1021/ja00364a005

[46]. Padmaja, L.; Ravikumar, C.; Sajan, D.; Hubert Joe, I.; Jayakumar, V. S.; Pettit, G. R.; Faurskov Nielsen, O. Density functional study on the structural conformations and intramolecular charge transfer from the vibrational spectra of the anticancer drug combretastatin‐A2. J. Raman Spectroscopy 2008, 40 (4), 419-428.
https://doi.org/10.1002/jrs.2145

[47]. Ettahiri, W.; El Moutaouakil Ala Allah, A.; Lazrak, J.; Safir, E.; Yadav, K.; Hammouti, B.; Obaidullah, A.; Rais, Z.; Ramli, Y.; Taleb, M. Synthesis, characterization, theoretical, and experimental evaluation of novel imidazolone − based compounds as eco-friendly corrosion inhibitors for mild steel. J. Ind. Eng. Chem. 2024, 140, 631-646.
https://doi.org/10.1016/j.jiec.2024.08.042

[48]. Ritchie, D. W. Hex 6.3 User Manual: Protein Docking Using Spherical Polar Fourier Correlations, 1996-2010.

Supporting Agencies

The Department of Physics, Sardar Patel University, Vallabh Vidyanagar, Gujarat, India, Department of Science and Technology (DST), New Delhi, India
Most read articles by the same author(s)
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

License Terms

by-nc

Copyright © 2025 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).