European Journal of Chemistry

Synthesis and characterization of 2-formylthymol-based azo-aldehyde dyes: Probing their efficacy as a radical scavenger in antioxidant applications

Crossmark


Main Article Content

Kishor Jaysing Girase
Santosh Venkatrao Dandge
Mangal Arun Chaudhari
Ratnamala Subhash Bendre

Abstract

A new series of azo-aldehyde dyes has been derived by performing a diazocoupling reaction between 2-isopropyl-5-methyl phenol and diazonium salts obtained by diazotization of differently substituted aromatic amines. The structures of newly synthesized azo-aldehydes were confirmed by modern analytical spectroscopic techniques such as 1H NMR, 13C NMR, FT-IR, and Mass. Thereafter, all synthesized azo-aldehyde dyes were evaluated for their in vitro antibacterial activity against S. aureus, S. typhumurium, E. coli, and P. aeruginosa strains using the plate method. The formed compounds were also evaluated for antioxidant activity. The present results provide new data to support that the thymol-based azo-aldehyde dyes have a potential to explore a variety of applications in the modern field of molecules and materials of high biological relevance.


icon graph This Abstract was viewed 54 times | icon graph Article PDF downloaded 10 times

How to Cite
(1)
Girase, K. J.; Dandge, S. V.; Chaudhari, M. A.; Bendre, R. S. Synthesis and Characterization of 2-Formylthymol-Based Azo-Aldehyde Dyes: Probing Their Efficacy As a Radical Scavenger in Antioxidant Applications. Eur. J. Chem. 2025, 16, 319-326.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Jyoti; Dheer, D.; Singh, D.; Kumar, G.; Karnatak, M.; Chandra, S.; Prakash Verma, V.; Shankar, R. Thymol Chemistry: A Medicinal Toolbox. Curr. Bioact. Compd. 2019, 15 (5), 454-474.
https://doi.org/10.2174/1573407214666180503120222

[2]. Butler, M. S.; Robertson, A. A.; Cooper, M. A. Natural product and natural product derived drugs in clinical trials. Nat. Prod. Rep. 2014, 31 (11), 1612-1661.
https://doi.org/10.1039/C4NP00064A

[3]. Agarwal, P.; Fatima, A.; Singh, P.P. Herbal medicine scenario in India and European countries. J. Pharmacogn. Phytochem. 2012, 1(4), 88-93 https://www.phytojournal.com/archives/2012.v1.i4.35/herbal-medicine-scenario-in-india-and-european-countries .

[4]. Wagner, K.-H.; Elmadfa, I. Effects of Tocopherols and Their Mixtures on the Oxidative Stability of Olive Oil and Linseed Oil under Heating. Eur. J. Lipid Sci. Technol. 2000, 102 (10), 624-629.
https://doi.org/10.1002/1438-9312(200010)102:10<624::AID-EJLT624>3.0.CO;2-I

[5]. Sfaei-Ghomi, J.; Meshkatalsadat, M.H.; Shamai, S.; Hasheminejad,M.; Hassani, A. Chemical characterization of bioactive volatilemolecules of four Thymus species using nanoscale injection method. Dig. J. Nanomater. Biostruct. 2009, 4 (4), 835-841.

[6]. Pathak, A.; Nainwal, N.; Goyal, B.; Singh, R.; Mishra, V.; Nayak,S.; Bansal, P.; Gupta, V. Pharmacological activity of Trachyspermumammi: a review. J. Pharm. Res. 2010, 3 (4), 895-899.

[7]. Escobar, A.; Pérez, M.; Romanelli, G.; Blustein, G. Thymol bioactivity: A review focusing on practical applications. Arabian. Journal. of. Chemistry. 2020, 13 (12), 9243-9269.
https://doi.org/10.1016/j.arabjc.2020.11.009

[8]. Nagoor Meeran, M. F.; Javed, H.; Al Taee, H.; Azimullah, S.; Ojha, S. K. Pharmacological Properties and Molecular Mechanisms of Thymol: Prospects for Its Therapeutic Potential and Pharmaceutical Development. Front. Pharmacol. 2017, 8.
https://doi.org/10.3389/fphar.2017.00380

[9]. Mohammadi, A.; Mahjoub, S.; Ghafarzadegan, K.; Nouri, H. R. Immunomodulatory effects of Thymol through modulation of redox status and trace element content in experimental model of asthma. Biomedicine & Pharmacotherapy 2018, 105, 856-861.
https://doi.org/10.1016/j.biopha.2018.05.154

[10]. Kowalczyk, A.; Przychodna, M.; Sopata, S.; Bodalska, A.; Fecka, I. Thymol and Thyme Essential Oil-New Insights into Selected Therapeutic Applications. Molecules 2020, 25 (18), 4125.
https://doi.org/10.3390/molecules25184125

[11]. Salehi, B.; Mishra, A. P.; Shukla, I.; Sharifi‐Rad, M.; Contreras, M. d.; Segura‐Carretero, A.; Fathi, H.; Nasrabadi, N. N.; Kobarfard, F.; Sharifi‐Rad, J. Thymol, thyme, and other plant sources: Health and potential uses. Phytotherapy Research 2018, 32 (9), 1688-1706.
https://doi.org/10.1002/ptr.6109

[12]. Botelho, M.; Nogueira, N.; Bastos, G.; Fonseca, S.; Lemos, T.; Matos, F.; Montenegro, D.; Heukelbach, J.; Rao, V.; Brito, G. Antimicrobial activity of the essential oil from Lippia sidoides, carvacrol and thymol against oral pathogens. Braz. J. Med. Biol. Res. 2007, 40 (3), 349-356.
https://doi.org/10.1590/S0100-879X2007000300010

[13]. Priya, A.; Selvaraj, A.; Divya, D.; Karthik Raja, R.; Pandian, S. K. In Vitro and In Vivo Anti-infective Potential of Thymol Against Early Childhood Caries Causing Dual Species Candida albicans and Streptococcus mutans. Front. Pharmacol. 2021, 12.
https://doi.org/10.3389/fphar.2021.760768

[14]. Yanishlieva, N. V.; Marinova, E. M.; Gordon, M. H.; Raneva, V. G. Antioxidant Activity and Mechanism of Action of Thymol and Carvacrol in Two Lipid Systems. Food Chem. 1999, 64 (1), 59-66.
https://doi.org/10.1016/S0308-8146(98)00086-7

[15]. Marchese, A.; Orhan, I. E.; Daglia, M.; Barbieri, R.; Di Lorenzo, A.; Nabavi, S. F.; Gortzi, O.; Izadi, M.; Nabavi, S. M. Antibacterial and antifungal activities of thymol: A brief review of the literature. Food Chemistry 2016, 210, 402-414.
https://doi.org/10.1016/j.foodchem.2016.04.111

[16]. Zarrini, G.; Delgosha, Z. B.; Moghaddam, K. M.; Shahverdi, A. R. Post-antibacterial effect of thymol. Pharmaceutical Biology 2010, 48 (6), 633-636.
https://doi.org/10.3109/13880200903229098

[17]. Nabavi, S. M.; Marchese, A.; Izadi, M.; Curti, V.; Daglia, M.; Nabavi, S. F. Plants belonging to the genus Thymus as antibacterial agents: From farm to pharmacy. Food. Chemistry. 2015, 173, 339-347.
https://doi.org/10.1016/j.foodchem.2014.10.042

[18]. Hajibonabi, A.; Yekani, M.; Sharifi, S.; Nahad, J. S.; Dizaj, S. M.; Memar, M. Y. Antimicrobial activity of nanoformulations of carvacrol and thymol: New trend and applications. OpenNano 2023, 13, 100170.
https://doi.org/10.1016/j.onano.2023.100170

[19]. Shcherbakova, L.; Mikityuk, O.; Arslanova, L.; Stakheev, A.; Erokhin, D.; Zavriev, S.; Dzhavakhiya, V. Studying the Ability of Thymol to Improve Fungicidal Effects of Tebuconazole and Difenoconazole Against Some Plant Pathogenic Fungi in Seed or Foliar Treatments. Front. Microbiol. 2021, 12.
https://doi.org/10.3389/fmicb.2021.629429

[20]. Jung, K.; Chung, M.; Bai, H.; Chung, B.; Lee, S. Investigation of Antifungal Mechanisms of Thymol in the Human Fungal Pathogen, Cryptococcus neoformans. Molecules 2021, 26 (11), 3476.
https://doi.org/10.3390/molecules26113476

[21]. Costa, M. F.; Durço, A. O.; Rabelo, T. K.; Barreto, R. d.; Guimarães, A. G. Effects of Carvacrol, Thymol and essential oils containing such monoterpenes on wound healing: a systematic review. Journa. of Pharmacy and Pharmacology 2019, 71 (2), 141-155.
https://doi.org/10.1111/jphp.13054

[22]. Reyes-Jurado, F.; Cervantes-Rincón, T.; Bach, H.; López-Malo, A.; Palou, E. Antimicrobial activity of Mexican oregano (Lippia berlandieri), thyme (Thymus vulgaris), and mustard (Brassica nigra) essential oils in gaseous phase. Industrial Crops and Product. 2019, 131, 90-95.
https://doi.org/10.1016/j.indcrop.2019.01.036

[23]. Pengsook, A.; Tharamak, S.; Keosaeng, K.; Koul, O.; Bullangpoti, V.; Kumrungsee, N.; Pluempanupat, W. Insecticidal and growth inhibitory effects of some thymol derivatives on the beet armyworm,Spodoptera exigua(Lepidoptera: Noctuidae) and their impact on detoxification enzymes. Pest. Management Science 2021, 78 (2), 684-691.
https://doi.org/10.1002/ps.6678

[24]. Novato, T. P.; Milhomem, M. N.; Marchesini, P. B.; Coutinho, A. L.; Silva, I. S.; de Souza Perinotto, W. M.; de Azevedo Prata, M. C.; Ferreira, L. L.; Lopes, W. D.; Costa-Júnior, L. M.; de Oliveira Monteiro, C. M. Acaricidal activity of carvacrol and thymol on acaricide-resistant Rhipicephalus microplus (Acari: Ixodidae) populations and combination with cypermethrin: Is there cross-resistance and synergism?. Veterinary Parasitology 2022, 310, 109787.
https://doi.org/10.1016/j.vetpar.2022.109787

[25]. Paudel, P.; Shah, F. M.; Guddeti, D. K.; Ali, A.; Chen, J.; Khan, I. A.; Li, X. Repellency of Carvacrol, Thymol, and Their Acetates against Imported Fire Ants. Insects. 2023, 14 (10), 790.
https://doi.org/10.3390/insects14100790

[26]. Alves Eloy, M.; Ribeiro, R.; Martins Meireles, L.; Antonio de Sousa Cutrim, T.; Santana Francisco, C.; Lirian Javarini, C.; Borges, W. d.; Costa, A. V.; Queiroz, V. T.; Scherer, R.; Lacerda, V.; Alves Bezerra Morais, P. Thymol as an Interesting Building Block for Promising Fungicides against Fusarium solani. J. Agric. Food. Chem. 2021, 69 (25), 6958-6967.
https://doi.org/10.1021/acs.jafc.0c07439

[27]. Chauhan, K. R.; Le, T. C.; Chintakunta, P. K.; Lakshman, D. K. Phyto-Fungicides: Structure Activity Relationships of the Thymol Derivatives against Rhizoctonia Solani. J. Agric. Chem. Environ. 2017, 06 (04), 175-185.
https://doi.org/10.4236/jacen.2017.64012

[28]. Cumming, W. M.; Howie, G. 41. Some dinaphthyl bases. Part II. Reduction of 1 : 1′-azoxy- and 1 : 1′-azo-naphthalenes. Isolation of 1 : 1′-hydrazonaphthalene. J. Chem. Soc. 1933, 133-135.
https://doi.org/10.1039/JR9330000133

[29]. Sharma, M.; Sharma, S.; Alkhanjaf, A. A. M.; Kumar Arora, N.; Saxena, B.; Umar, A.; Ibrahim, A. A.; Akhtar, M. S.; Mahajan, A.; Negi, S.; et al. Microbial Fuel Cells for Azo Dye Degradation: A Perspective Review. J. Ind. Eng. Chem. 2025, 142, 45-67.
https://doi.org/10.1016/j.jiec.2024.07.031

[30]. Coelho, P. J.; Castro, M. C.; Fonseca, A. M.; Raposo, M. M. Photoswitching in azo dyes bearing thienylpyrrole and benzothiazole heterocyclic systems. Dyes and Pigments 2012, 92 (1), 745-748.
https://doi.org/10.1016/j.dyepig.2011.06.019

[31]. Benkhaya, S.; M'rabet, S.; El Harfi, A. Classifications, properties, recent synthesis and applications of azo dyes. Heliyon 2020, 6 (1), e03271.
https://doi.org/10.1016/j.heliyon.2020.e03271

[32]. Guerra, E.; Llompart, M.; Garcia-Jares, C. Analysis of Dyes in Cosmetics: Challenges and Recent Developments. Cosmetics 2018, 5 (3), 47.
https://doi.org/10.3390/cosmetics5030047

[33]. Yamjala, K.; Nainar, M. S.; Ramisetti, N. R. Methods for the Analysis of Azo Dyes Employed in Food Industry--A Review. Food Chem. 2016, 192, 813-824.
https://doi.org/10.1016/j.foodchem.2015.07.085

[34]. Zollinger, H. Color Chemistry: Syntheses, Properties, and Applications of Organic Dyes and Pigments, 3rd ed.; Helvitica Chimica Acta Verlag, 2003.

[35]. Topaç, F. O.; Dindar, E.; Uçaroğlu, S.; Başkaya, H. S. Effect of a sulfonated azo dye and sulfanilic acid on nitrogen transformation processes in soil. Journal o. Hazardous Materials 2009, 170 (2-3), 1006-1013.
https://doi.org/10.1016/j.jhazmat.2009.05.080

[36]. Hu, T. L.; Wu, S. C. Assessment of the Effect of Azo Dye RP2B on the Growth of a Nitrogen Fixing Cyanobacterium--Anabaena Sp. Bioresour. Technol. 2001, 77 (1), 93-95.
https://doi.org/10.1016/S0960-8524(00)00124-3

[37]. Kılınçarslan, R.; Erdem, E.; Kocaokutgen, H. Synthesis and Spectral Characterization of Some New Azo Dyes and Their Metal Complexes. Transit. Met. Chem. 2007, 32 (1), 102-106.
https://doi.org/10.1007/s11243-006-0134-x

[38]. Mishra, V. R.; Ghanavatkar, C. W.; Sekar, N. UV protective heterocyclic disperse azo dyes: Spectral properties, dyeing, potent antibacterial activity on dyed fabric and comparative computational study. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2019, 223, 117353.
https://doi.org/10.1016/j.saa.2019.117353

[39]. Davis, C. E.; Leffler, R.; Anderson, J. B.; Soderberg, D. L.; Meredith, F. I. Effect of pH on Absorbance of Azo Dye Formed by Reaction Between Nitrite and Sulfanilamide/N-(l-Naphthyl)ethylenediamine in Residual Nitrite Methods for Foods. Journal of AOAC International 1985, 68 (3), 485-488.
https://doi.org/10.1093/jaoac/68.3.485

[40]. Hovind, H. R. Thiazolylazo dyes and their applications in analytical chemistry. A review. Analyst 1975, 100 (1196), 769.
https://doi.org/10.1039/an9750000769

[41]. Rajput, J. D. Design, Synthesis and Biological Evaluation of Novel Class Diindolyl Methanes (DIMs) Derived from Naturally Occurring Phenolic Monoterpenoids. Med. Chem. 2016, 6 (2).
https://doi.org/10.4172/2161-0444.1000336

[42]. Sallal, Z. A.; Ghanem, H. T. Synthesis and Identification of New Oxazepine Derivatives Bearing Azo Group in Their Structures. Iraqi J. Sci. 2018, 59 (1A).
https://doi.org/10.24996/ijs.2018.59.1A.1

[43]. Bhoi, R. T.; Bhoi, C. N.; Nikume, S. R.; Bendre, R. S. Design, synthesis, and in silico studies of benzimidazoles of thymol as potent antiplasmodial and antimicrobial agents. Results in Chemistry 2023, 6, 101112.
https://doi.org/10.1016/j.rechem.2023.101112

[44]. Dandge, S. V.; Nikume, S. R.; Bendre, R. S. An efficient synthesis, characterization, antimicrobial and anticancer activities of azo dyes derived from eugenol. Synthetic Communications 2023, 54 (4), 282-292.
https://doi.org/10.1080/00397911.2023.2297952

[45]. Özkan, A.; Erdoğan, A. A comparative evaluation of antioxidant and anticancer activity of essential oil from Origanum onites (Lamiaceae) and its two major phenolic components. Turkish Journal of Biology 2011.
https://doi.org/10.3906/biy-1011-170

[46]. Maksimović, Z.; Milenković, M.; Vučićević, D.; Ristić, M. Chemical composition and antimicrobial activity of Thymus pannonicus All. (Lamiaceae) essential oil. Open Life Sciences 2008, 3 (2), 149-154.
https://doi.org/10.2478/s11535-008-0013-x

[47]. Aroua, L. M.; Almuhaylan, H. R.; Alminderej, F. M.; Messaoudi, S.; Chigurupati, S.; Al-mahmoud, S.; Mohammed, H. A. A facile approach synthesis of benzoylaryl benzimidazole as potential α-amylase and α-glucosidase inhibitor with antioxidant activity. Bioorganic Chemistry 2021, 114, 105073.
https://doi.org/10.1016/j.bioorg.2021.105073

[48]. Bhatt, P.; Paudel, P.; Regmi, D.; Soni, S.; Dhungana, P.; Joshi, J. Degradation of potato peels using amylase- and pectinase-producing fungal strain in an electrochemical cell and by-product analysis. International. Journal of Sustainable Energy 2024, 43 (1).
https://doi.org/10.1080/14786451.2024.2345735

[49]. Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M. T.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. The. International. Journal of Biochemistry & Cell Biology 2007, 39 (1), 44-84.
https://doi.org/10.1016/j.biocel.2006.07.001

[50]. Marinova, G.; Batchvarov, V. Evaluation of the methods for determination of the free radical scavenging activity by DPPH. Bulgarian Journal of Agricultural Science, 2011, 17 (1), 11-24.

[51]. Rodriguez, G. M.; Atsumi, S. Toward aldehyde and alkane production by removing aldehyde reductase activity in Escherichia coli. Metabolic Engineering 2014, 25, 227-237.
https://doi.org/10.1016/j.ymben.2014.07.012

[52]. Banerjee, G.; Chattopadhyay, P. Vanillin biotechnology: the perspectives and future. J. Sci. Food. Agric. 2018, 99 (2), 499-506.
https://doi.org/10.1002/jsfa.9303

[53]. Longo, M. A.; Sanroman, M. A. Production of Food Aroma Compounds: Microbial and Enzymatic Methodologies. Food Technol. Biotechnol. 2006, 44, 335-353.

[54]. de Lima, L. F.; Brandão, P. F.; Donegatti, T. A.; Ramos, R. M.; Gonçalves, L. M.; Cardoso, A. A.; Pereira, E. A.; Rodrigues, J. A. 4-hydrazinobenzoic acid as a derivatizing agent for aldehyde analysis by HPLC-UV and CE-DAD. Talanta 2018, 187, 113-119.
https://doi.org/10.1016/j.talanta.2018.04.091

[55]. Thoer, A.; Denis, G.; Delmas, M.; Gaset, A. The Reimer-Tiemann Reaction in Slightly Hydrated Solid-liquid Medium: A New Method for the Synthesis of Formyl and Diformyl Phenols. Synthetic Communications 1988, 18 (16-17), 2095-2101.
https://doi.org/10.1080/00397918808068278

[56]. Wang, Z. Comprehensive Organic Name Reactions and Reagents; Wiley, 2010.
https://doi.org/10.1002/9780470638859

[57]. Wynberg, H. The Reimer-Tiemann Reaction. Chem. Rev. 1960, 60 (2), 169-184.
https://doi.org/10.1021/cr60204a003

[58]. Hine, J.; Van Der Veen, J. M. The Mechanism of the Reimer-Tiemann Reaction1. J. Am. Chem. Soc. 1959, 81 (24), 6446-6449.
https://doi.org/10.1021/ja01533a028

[59]. Wynberg, H. The Reimer-Tiemann Reaction. In Comprehensive Organic Synthesis; Elsevier, 1991; pp 769-775.
https://doi.org/10.1016/B978-0-08-052349-1.00048-2

[60]. Hans, W.; Meijer, E. W. Organic Reactions, volume 28, John Wiley and Sons. Inc. 1982.

[61]. Siodła, T.; Ozimiński, W. P.; Hoffmann, M.; Koroniak, H.; Krygowski, T. M. Toward a Physical Interpretation of Substituent Effects: The Case of Fluorine and Trifluoromethyl Groups. J. Org. Chem. 2014, 79 (16), 7321-7331.
https://doi.org/10.1021/jo501013p

[62]. Boulanouar, B.; Hadjira, G.; Maria, R.; Abdelaziz, G. DPPH Free Radical Scavenging Activity of Ethanolic Extracts of Twenty Two Medicinal Species from South Algeria (Laghouat Region). Medicinal & Analytical Chemistry International 2017, 1 (1).
https://doi.org/10.23880/MACIJ-16000105

[63]. Mishra, K.; Ojha, H.; Chaudhury, N. K. Estimation of antiradical properties of antioxidants using DPPH assay: A critical review and results. Food Chemistry 2012, 130 (4), 1036-1043.
https://doi.org/10.1016/j.foodchem.2011.07.127

[64]. El Hariri, B.; Sallé, G.; Andary, C. Involvement of flavonoids in the resistance of two poplar cultivars to mistletoe (Viscum album L.). Protoplasma 1991, 162 (1), 20-26.
https://doi.org/10.1007/BF01403897

[65]. Karou, D.; Dicko, M. H.; Simpore, J.; Traore, A. S. Antioxidant and antbacterial activities of polyphenols from ethnomedicinal plants of Burkina Faso. Afr. J. Biotechnol. 2005, 4 (8), 823-828.

[66]. Ouédraogoa, S.; Traoré, A.; Somé, N.; Lompo, M.; Guissoua, P. I.; Schott, C.; Bucher, B.; Andriantsitohaina, R. Cardiovascular properties of aqueous extract from Tapinanthus dodoneifolius DC Danser. Afr. J. Trad. Compl. Alt. Med. 2004, 2 (1).
https://doi.org/10.4314/ajtcam.v2i1.31101

[67]. Ouedraogo, M.; Ouedroago, S.; Ouedraogo, L.; Traore, A.; Belemtougri, G. R.; Sawadogo, L. L.; Guissou, I. P. Pharmacological evaluations for the relaxant effect of the hydroalcoholic extract of Tapinanthusdodoneifolius on rat trachea. Afr. J. Tradit. Complement Altern. Med. 2005, 2 (2), 166-176.
https://doi.org/10.4314/ajtcam.v2i2.31114

[68]. Boly, R. Modulatory activities of Agelanthus dodoneifolius (Loranthaceae) extracts on stimulated equine neutrophils and myeloperoxidase activity. Int. J. Mol. Med. 2011, 28, 261-270.
https://doi.org/10.3892/ijmm.2011.695

[69]. Locatelli, M.; Gindro, R.; Travaglia, F.; Coïsson, J.; Rinaldi, M.; Arlorio, M. Study of the DPPH-scavenging activity: Development of a free software for the correct interpretation of data. Food Chemistry 2009, 114 (3), 889-897.
https://doi.org/10.1016/j.foodchem.2008.10.035

[70]. Shalaby, E. A.; Shanab, S. M. M. Comparison of DPPH and ABTS assays for determining antioxidant potential of water and methanol extracts of Spirulina platensis. Indian J. Mar. Sci. 2013, 42 (5), 555-564.

[71]. Kedare, S. B.; Singh, R. P. Genesis and development of DPPH method of antioxidant assay. J. Food. Sci. Technol. 2011, 48 (4), 412-422.
https://doi.org/10.1007/s13197-011-0251-1

Most read articles by the same author(s)
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

License Terms

by-nc

Copyright © 2025 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).