European Journal of Chemistry

Theoretical study of the paracetamol adsorption over a graphene oxide sheet

Crossmark


Main Article Content

Beatriz Paulina López-Jesús
Sandy María Pacheco-Ortin
Esther Agacino-Valdés

Abstract

In recent decades, the detection of non-steroidal anti-inflammatory drugs (NSAIDs) in various water bodies has raised concerns for their environmental impact, since conventional wastewater treatment plants are inefficient for removing these pharmaceutical contaminants. In this way, many researchers have proposed various techniques, including the use of adsorbent materials. In this work, we conducted a theoretical study of the adsorption of the paracetamol (PCT) molecule on a large cluster (C80H26O24) of graphene oxide (GO) that simulates a sheet. The calculations were based on the DFT formalism using the combination M06-2X/6-31G**. The GO sheet used, with a C/O ratio of 3.5 and an oxygen content of 17%, exhibited a high adsorption capacity and stability. The adsorption energies for the most preferred complexes were 22 kcal/mol with adsorption distances between 1.84 and 2.60 Å, which allowed us to conclude that this is a very favored chemisorption process. The interaction distances and adsorption energies obtained were compared with those from other studies, confirming that the DFT approach used in this work, as well as the GO sheet modeled, were suitable. The percentages of elongation of the bonds in the PCT molecule, calculated from the bond distances before and after the adsorption process, evidenced a weakening of certain bonds in the molecule related to its most likely fragmentations. Therefore, it is concluded that these adsorption processes mediated by GO sheets can help, together with other methods, with PCT degradation.


icon graph This Abstract was viewed 9 times | icon graph Article PDF downloaded 1 times

How to Cite
(1)
López-Jesús, B. P.; Pacheco-Ortin, S. M.; Agacino-Valdés, E. Theoretical Study of the Paracetamol Adsorption over a Graphene Oxide Sheet. Eur. J. Chem. 2025, 16, 395-402.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Luo, Y.; Guo, W.; Ngo, H. H.; Nghiem, L. D.; Hai, F. I.; Zhang, J.; Liang, S.; Wang, X. C. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci. Total. Environ. 2014, 473-474, 619-641.
https://doi.org/10.1016/j.scitotenv.2013.12.065

[2]. Surana, D.; Gupta, J.; Sharma, S.; Kumar, S.; Ghosh, P. A review on advances in removal of endocrine disrupting compounds from aquatic matrices: Future perspectives on utilization of agri-waste based adsorbents. Sci. Total. Environ. 2022, 826, 154129.
https://doi.org/10.1016/j.scitotenv.2022.154129

[3]. Kumar, R.; Qureshi, M.; Vishwakarma, D. K.; Al-Ansari, N.; Kuriqi, A.; Elbeltagi, A.; Saraswat, A. A review on emerging water contaminants and the application of sustainable removal technologies. Case Stud. Chem. Environ. Eng. 2022, 6, 100219.
https://doi.org/10.1016/j.cscee.2022.100219

[4]. Feng, L.; van Hullebusch, E. D.; Rodrigo, M. A.; Esposito, G.; Oturan, M. A. Removal of residual anti-inflammatory and analgesic pharmaceuticals from aqueous systems by electrochemical advanced oxidation processes. A review. Chem. Eng. J. 2013, 228, 944-964.
https://doi.org/10.1016/j.cej.2013.05.061

[5]. Veras, T. B.; Luiz Ribeiro de Paiva, A.; Duarte, M. M.; Napoleão, D. C.; da Silva Pereira Cabral, J. J. Analysis of the presence of anti-inflammatories drugs in surface water: A case study in Beberibe river - PE, Brazil. Chemosphere 2019, 222, 961-969.
https://doi.org/10.1016/j.chemosphere.2019.01.167

[6]. Phong Vo, H. N.; Le, G. K.; Hong Nguyen, T. M.; Bui, X.; Nguyen, K. H.; Rene, E. R.; Vo, T. D.; Thanh Cao, N.; Mohan, R. Acetaminophen micropollutant: Historical and current occurrences, toxicity, removal strategies and transformation pathways in different environments. Chemosphere 2019, 236, 124391.
https://doi.org/10.1016/j.chemosphere.2019.124391

[7]. Pacheco-Álvarez, M.; Picos Benítez, R.; Rodríguez-Narváez, O. M.; Brillas, E.; Peralta-Hernández, J. M. A critical review on paracetamol removal from different aqueous matrices by Fenton and Fenton-based processes, and their combined methods. Chemosphere 2022, 303, 134883.
https://doi.org/10.1016/j.chemosphere.2022.134883

[8]. Valdez-Carrillo, M.; Abrell, L.; Ramírez-Hernández, J.; Reyes-López, J. A.; Carreón-Diazconti, C. Pharmaceuticals as emerging contaminants in the aquatic environment of Latin America: a review. Environ. Sci. Pollut. Res. 2020, 27 (36), 44863-44891.
https://doi.org/10.1007/s11356-020-10842-9

[9]. Jiang, T.; Wu, W.; Ma, M.; Hu, Y.; Li, R. Occurrence and distribution of emerging contaminants in wastewater treatment plants: A globally review over the past two decades. Sci. Total. Environ. 2024, 951, 175664.
https://doi.org/10.1016/j.scitotenv.2024.175664

[10]. Lee, W. J.; Goh, P. S.; Lau, W. J.; Ismail, A. F. Removal of Pharmaceutical Contaminants from Aqueous Medium: A State-of-the-Art Review Based on Paracetamol. Arab. J. Sci. Eng. 2020, 45 (9), 7109-7135.
https://doi.org/10.1007/s13369-020-04446-1

[11]. Salimi, M.; Esrafili, A.; Gholami, M.; Jonidi Jafari, A.; Rezaei Kalantary, R.; Farzadkia, M.; Kermani, M.; Sobhi, H. R. Contaminants of emerging concern: a review of new approach in AOP technologies. Environ. Monit. Assess. 2017, 189 (8), 414 https://doi.org/10.1007/s10661-017-6097-x.
https://doi.org/10.1007/s10661-017-6097-x

[12]. Leyva, E.; Moctezuma, E.; Baines, K. M.; Noriega, S.; Zarazua, E. A Review on Chemical Advanced Oxidation Processes for Pharmaceuticals with Paracetamol as a Model Compound. Reaction Conditions, Intermediates and Total Mechanism. Curr. Org. Chem. 2018, 22 (1), 2-17.
https://doi.org/10.2174/1385272821666171019145520

[13]. Yang, W.; Zhou, H.; Cicek, N. Treatment of Organic Micropollutants in Water and Wastewater by UV-Based Processes: A Literature Review. Crit. Rev. Environ. Sci. Technol. 2014, 44 (13), 1443-1476.
https://doi.org/10.1080/10643389.2013.790745

[14]. Checa, M.; Beltrán, F. J.; Rivas, F. J.; Cordero, E. On the role of a graphene oxide/titania catalyst, visible LED and ozone in removing mixtures of pharmaceutical contaminants from water and wastewater. Environ. Sci. Water Res. Technol. 2020, 6 (9), 2352-2364.
https://doi.org/10.1039/D0EW00276C

[15]. Moussavi, G.; Hossaini, Z.; Pourakbar, M. High-rate adsorption of acetaminophen from the contaminated water onto double-oxidized graphene oxide. Chem. Eng. J. 2016, 287, 665-673.
https://doi.org/10.1016/j.cej.2015.11.025

[16]. Scaria, J.; Gopinath, A.; Ranjith, N.; Ravindran, V.; Ummar, S.; Nidheesh, P.; Kumar, M. S. Carbonaceous materials as effective adsorbents and catalysts for the removal of emerging contaminants from water. J. Cleaner. Prod. 2022, 350, 131319.
https://doi.org/10.1016/j.jclepro.2022.131319

[17]. Almeida-Naranjo, C. E.; Guerrero, V. H.; Villamar-Ayala, C. A. Emerging Contaminants and Their Removal from Aqueous Media Using Conventional/Non-Conventional Adsorbents: A Glance at the Relationship between Materials, Processes, and Technologies. Water 2023, 15 (8), 1626.
https://doi.org/10.3390/w15081626

[18]. Anegbe, B.; Ifijen, I. H.; Maliki, M.; Uwidia, I. E.; Aigbodion, A. I. Graphene oxide synthesis and applications in emerging contaminant removal: a comprehensive review. Environ. Sci. Eur. 2024, 36 (1), 1-34 https://doi.org/10.1186/s12302-023-00814-4.
https://doi.org/10.1186/s12302-023-00814-4

[19]. Chen, H.; Gao, B.; Li, H. Removal of sulfamethoxazole and ciprofloxacin from aqueous solutions by graphene oxide. J. Hazard. Mater. 2015, 282, 201-207.
https://doi.org/10.1016/j.jhazmat.2014.03.063

[20]. Lee, B. C.; Lim, F. Y.; Loh, W. H.; Ong, S. L.; Hu, J. Emerging Contaminants: An Overview of Recent Trends for Their Treatment and Management Using Light-Driven Processes. Water 2021, 13 (17), 2340.
https://doi.org/10.3390/w13172340

[21]. López Zavala, M.; Jaber Lara, C. R. Degradation of Paracetamol and Its Oxidation Products in Surface Water by Electrochemical Oxidation. Environ. Eng. Sci. 2018, 35 (11), 1248-1254.
https://doi.org/10.1089/ees.2018.0023

[22]. Kong, E.; Chau, J.; Lai, C.; Khe, C.; Sharma, G.; Kumar, A.; Siengchin, S.; Sanjay, M. GO/TiO2-Related Nanocomposites as Photocatalysts for Pollutant Removal in Wastewater Treatment. Nanomaterials 2022, 12 (19), 3536.
https://doi.org/10.3390/nano12193536

[23]. Guo, S.; Zhang, G.; Guo, Y.; Yu, J. C. Graphene oxide-Fe2O3 hybrid material as highly efficient heterogeneous catalyst for degradation of organic contaminants. Carbon 2013, 60, 437-444.
https://doi.org/10.1016/j.carbon.2013.04.058

[24]. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian, Inc., Wallingford CT, 2009.

[25]. Zhao, Y.; Truhlar, D. G. A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. J. Chem. Phys. 2006, 125 (19), 194101 https://doi.org/10.1063/1.2370993.
https://doi.org/10.1063/1.2370993

[26]. Zhao, Y.; Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2007, 120 (1-3), 215-241.
https://doi.org/10.1007/s00214-007-0310-x

[27]. Vovusha, H.; Sanyal, S.; Sanyal, B. Interaction of Nucleobases and Aromatic Amino Acids with Graphene Oxide and Graphene Flakes. J. Phys. Chem. Lett. 2013, 4 (21), 3710-3718.
https://doi.org/10.1021/jz401929h

[28]. Safdari, F.; Raissi, H.; Shahabi, M.; Zaboli, M. DFT Calculations and Molecular Dynamics Simulation Study on the Adsorption of 5-Fluorouracil Anticancer Drug on Graphene Oxide Nanosheet as a Drug Delivery Vehicle. J. Inorg. Organomet. Polym. 2017, 27 (3), 805-817.
https://doi.org/10.1007/s10904-017-0525-9

[29]. Rohini, K.; Sylvinson, D. M.; Swathi, R. S. Intercalation of HF, H2O, and NH3 Clusters within the Bilayers of Graphene and Graphene Oxide: Predictions from Coronene-Based Model Systems. J. Phys. Chem. A. 2015, 119 (44), 10935-10945.
https://doi.org/10.1021/acs.jpca.5b05702

[30]. Zaboli, M.; Raissi, H.; Moghaddam, N. R.; Farzad, F. Probing the adsorption and release mechanisms of cytarabine anticancer drug on/from dopamine functionalized graphene oxide as a highly efficient drug delivery system. J. Mol. Liq. 2020, 301, 112458.
https://doi.org/10.1016/j.molliq.2020.112458

[31]. Shahabi, M.; Raissi, H. Investigation of the solvent effect, molecular structure, electronic properties and adsorption mechanism of Tegafur anticancer drug on Graphene nanosheet surface as drug delivery system by molecular dynamics simulation and density functional approach. J. Incl. Phenom. Macrocycl. Chem. 2017, 88 (3-4), 159-169.
https://doi.org/10.1007/s10847-017-0713-9

[32]. Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B. 2009, 113 (18), 6378-6396.
https://doi.org/10.1021/jp810292n

[33]. Velázquez-López, L.; Pacheco-Ortin, S.; Mejía-Olvera, R.; Agacino-Valdés, E. DFT study of CO adsorption on nitrogen/boron doped-graphene for sensor applications. J. Mol. Model. 2019, 25 (4), 91 https://doi.org/10.1007/s00894-019-3973-z.
https://doi.org/10.1007/s00894-019-3973-z

[34]. Yeamin, M. B.; Faginas-Lago, N.; Albertí, M.; Cuesta, I. G.; Sánchez-Marín, J.; Sánchez de Merás, A. M. Multi-scale theoretical investigation of molecular hydrogen adsorption over graphene: coronene as a case study. RSC. Adv. 2014, 4 (97), 54447-54453.
https://doi.org/10.1039/C4RA08487J

[35]. Lerf, A. 13C and 1H MAS NMR Studies of Graphite Oxide and Its Chemically Modified Derivatives. Solid State Ion. 1997, 101-103, 857-862.
https://doi.org/10.1016/S0167-2738(97)00319-6

[36]. Lerf, A.; He, H.; Forster, M.; Klinowski, J. Structure of Graphite Oxide Revisited. J. Phys. Chem. B. 1998, 102 (23), 4477-4482.
https://doi.org/10.1021/jp9731821

[37]. Luo, H.; Auchterlonie, G.; Zou, J. A thermodynamic structural model of graphene oxide. J. Appl. Phys. 2017, 122 (14), 145101 https://doi.org/10.1063/1.4991967.
https://doi.org/10.1063/1.4991967

[38]. Gao, W.; Alemany, L. B.; Ci, L.; Ajayan, P. M. New insights into the structure and reduction of graphite oxide. Nature Chem. 2009, 1 (5), 403-408.
https://doi.org/10.1038/nchem.281

[39]. Qiao, Q.; Liu, C.; Gao, W.; Huang, L. Graphene oxide model with desirable structural and chemical properties. Carbon 2019, 143, 566-577.
https://doi.org/10.1016/j.carbon.2018.11.063

[40]. Sinclair, R. C.; Coveney, P. V. Modeling Nanostructure in Graphene Oxide: Inhomogeneity and the Percolation Threshold. J. Chem. Inf. Model. 2019, 59 (6), 2741-2745.
https://doi.org/10.1021/acs.jcim.9b00114

[41]. Haisa, M.; Kashino, S.; Kawai, R.; Maeda, H. The Monoclinic Form of p-Hydroxyacetanilide. Acta. Crystallogr. B. Struct. Crystallogr. Cryst. Chem. 1976, 32 (4), 1283-1285.
https://doi.org/10.1107/S0567740876012223

[42]. Haisa, M.; Kashino, S.; Maeda, H. The Orthorhombic Form of P-Hydroxyacetanilide. Acta Crystallogr. B 1974, 30 (10), 2510-2512.
https://doi.org/10.1107/S0567740874007473

[43]. Nguyen, T. H.; Nguyen, T. H.; Le, T. T.; Vu Dang, H.; Nguyen, H. M. Interactions between Paracetamol and Formaldehyde: Theoretical Investigation and Topological Analysis. ACS. Omega 2023, 8 (13), 11725-11735.
https://doi.org/10.1021/acsomega.2c05023

[44]. Srivastava, K.; Shimpi, M. R.; Srivastava, A.; Tandon, P.; Sinha, K.; Velaga, S. P. Vibrational analysis and chemical activity of paracetamol-oxalic acid cocrystal based on monomer and dimer calculations: DFT and AIM approach. RSC. Adv. 2016, 6 (12), 10024-10037.
https://doi.org/10.1039/C5RA24402A

[45]. González-Rodríguez, L.; Yáñez, O.; Mena- Ulecia, K.; Hidalgo-Rosa, Y.; García- Carmona, X.; Ulloa- Tesser, C. Exploring the adsorption of five emerging pollutants on activated carbon: A theoretical approach. J. Environ. Chem. Eng. 2024, 12 (3), 112911.
https://doi.org/10.1016/j.jece.2024.112911

[46]. Hasanzade, Z.; Raissi, H. Solvent/co-solvent effects on the electronic properties and adsorption mechanism of anticancer drug Thioguanine on Graphene oxide surface as a nanocarrier: Density functional theory investigation and a molecular dynamics. Appl. Surf. Sci. 2017, 422, 1030-1041.
https://doi.org/10.1016/j.apsusc.2017.05.245

[47]. Anchique, L.; Alcázar, J. J.; Ramos-Hernandez, A.; Méndez-López, M.; Mora, J. R.; Rangel, N.; Paz, J. L.; Márquez, E. Predicting the Adsorption of Amoxicillin and Ibuprofen on Chitosan and Graphene Oxide Materials: A Density Functional Theory Study. Polymers 2021, 13 (10), 1620.
https://doi.org/10.3390/polym13101620

[48]. de Matos, C. F.; Leão, M. B.; Vendrame, L. F.; Jauris, I. M.; Zanella, I.; Fagan, S. B. Unlocking the paracetamol adsorption mechanism in graphene tridimensional-based materials: an experimental-theoretical approach. Front. Carbon 2024, 3, 1305183 https://doi.org/10.3389/frcrb.2024.1305183.
https://doi.org/10.3389/frcrb.2024.1305183

[49]. Belal, T.; Awad, T.; Clark, R. Determination of Paracetamol and Tramadol Hydrochloride in Pharmaceutical Mixture Using HPLC and GC-MS. J. Chromatogr. Sci. 2009, 47 (10), 849-854.
https://doi.org/10.1093/chromsci/47.10.849

Supporting Agencies

Dirección General de Comunicación at the Universidad Nacional Autónoma de México (DGTIC- UNAM) through the Grants LANCAD-UNAM-DGTIC-156 and the “Cátedra de Investigación CI2448”-FES-Cuautitlán-UNAM.
Most read articles by the same author(s)

Most read articles by the same author(s)

TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

License Terms

by-nc

Copyright © 2025 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).