European Journal of Chemistry

Crystal structure and supramolecular features of O-ethyl pivaloylcarbamothioate: insights from Hirshfeld surface and energy framework analyses

Crossmark


Main Article Content

Salih Uslu
Ummuhan Solmaz
Hakan Arslan

Abstract

The crystal structure of O-ethyl pivaloylcarbamothioate has been determined by single-crystal X-ray diffraction. The compound crystallizes in the orthorhombic crystal system, the space group Pbca, with unit-cell dimensions a = 10.144(9) Å, b = 10.230(6) Å, c = 19.934(19) Å. The unit-cell volume is 2069(3) Å3 with Z = 8 at 298.15(2) K. A crystal specimen of size 0.241 × 0.217 × 0.124 mm3 was used for data collection using CuKα radiation (λ = 1.54178 Å). The measured reflections (25,062 in total) covered the index ranges −12 ≤ h ≤ 12, −12 ≤ k ≤ 13, and −25 ≤ l ≤ 25, of which 2246 were unique (Rint = 0.1349, Rsigma = 0.0658). The refinement converged with the final values R1 = 0.0942 [I > 2σ(I)] and wR2 = 0.2485 (all data), giving a calculated density of 1.216 g/cm3 and the absorption coefficient μ = 2.506 mm-1. The crystal structure of the title compound is stabilized by a hierarchical supramolecular architecture involving both classical (N-H···O) and non-classical (C-H···O, C-H···N, C-H···S) hydrogen bonds, giving rise to triangular, zigzag, and cyclic motifs as well as  and  synthons. Hirshfeld surface and fingerprint analyses confirm that H···H contacts dominate the packing, whereas directional H···O and H···S interactions play a crucial role in lattice cohesion. Interaction energy calculations further reveal that electrostatic and dispersion forces are the main contributors to the stabilization of the three-dimensional framework.


icon graph This Abstract was viewed 11 times | icon graph Article PDF downloaded 2 times icon graph Article CIF FILE downloaded 0 times

How to Cite
(1)
Uslu, S.; Solmaz, U.; Arslan, H. Crystal Structure and Supramolecular Features of O-Ethyl Pivaloylcarbamothioate: Insights from Hirshfeld Surface and Energy Framework Analyses. Eur. J. Chem. 2025, 16, 370-378.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Khalaj, M. Synthesis of carbamothioate derivatives via a copper catalyzed thiocarboxamidation of aryl iodides. Monatsh. Chem. 2020, 151 (6), 945-952.
https://doi.org/10.1007/s00706-020-02613-6

[2]. Beji, M.; Sbihi, H.; Baklouti, A.; Cambon, A. Synthesis of F-alkyl N-sulfonyl carbamates and thiocarbamates. J. Fluor. Chem. 1999, 99, 17-24.
https://doi.org/10.1016/S0022-1139(99)00096-2

[3]. Heyns, A. J.; Carter, G. A.; Rothwell, K.; Waın, R. L. Investigations on fungicides: The systemic fungicidal activity of certain N‐carboxymethyl dithiocarbamic acid derivatives. Annals. Applied Biology 1966, 57 (1), 33-51.
https://doi.org/10.1111/j.1744-7348.1966.tb06864.x

[4]. Padiya, K. J.; Gavade, S.; Kardile, B.; Tiwari, M.; Bajare, S.; Mane, M.; Gaware, V.; Varghese, S.; Harel, D.; Kurhade, S. Unprecedented "In Water" Imidazole Carbonylation: Paradigm Shift for Preparation of Urea and Carbamate. Org. Lett. 2012, 14 (11), 2814-2817.
https://doi.org/10.1021/ol301009d

[5]. Bowden, K.; Bromley, K. Reactions of carbonyl compounds in basic solutions. Part 15. The alkaline hydrolysis of N-methyl, N-phenyl and bicyclo lactams, penicillins and N-alkyl-N-methylacetamides. J. Chem. Soc., Perkin Trans. 2. 1990, 2111.
https://doi.org/10.1039/p29900002111

[6]. Erian, A. W.; Sherif, S. M. The chemistry of thiocyanic esters. Tetrahedron 1999, 55, 7957-8024.
https://doi.org/10.1016/S0040-4020(99)00386-5

[7]. Wood, T. F.; Gardner, J. H. The Synthesis of Some Dialkylaminoalkyl Arylthiourethans and Thioureas1. J. Am. Chem. Soc. 1941, 63 (10), 2741-2742.
https://doi.org/10.1021/ja01855a068

[8]. Goel, A.; Mazur, S. J.; Fattah, R. J.; Hartman, T. L.; Turpin, J. A.; Huang, M.; Rice, W. G.; Appella, E.; Inman, J. K. Benzamide-based thiolcarbamates: a new class of HIV-1 NCp7 inhibitors. Bioorg. Med. Chem. Lett. 2002, 12, 767-770.
https://doi.org/10.1016/S0960-894X(02)00007-0

[9]. Tan, D.; Ng, Z. X.; Ganguly, R.; Li, Y.; Soo, H. S.; Mohamed, S.; García, F. Investigating the solid-state assembly of pharmaceutically-relevant N,N-dimethyl-O-thiocarbamates in the absence of labile hydrogen bonds. CrystEngComm. 2020, 22 (48), 8290-8298.
https://doi.org/10.1039/D0CE01336F

[10]. Mampuys, P.; Zhu, Y.; Sergeyev, S.; Ruijter, E.; Orru, R. V.; Van Doorslaer, S.; Maes, B. U. Iodide-Catalyzed Synthesis of Secondary Thiocarbamates from Isocyanides and Thiosulfonates. Org. Lett. 2016, 18 (12), 2808-2811.
https://doi.org/10.1021/acs.orglett.6b01023

[11]. Lindgren, B.; Lindgren, G.; Artursson, E.; Puu, G.; Fredriksson, J.; Andersson, M. Acetylcholinesterase Inhibition by Sulphur and Selenium Heterosubstituted Isomers ofN,N-Diethylcarbamyl Choline and Carbaryl. J. Enzyme. Inhibition 1985, 1 (1), 1-11.
https://doi.org/10.3109/14756368509031277

[12]. Ishikawa, K.; Okuda, I.; Kuwatsuka, S. Metabolism of Benthiocarb (4-Chlorobenzyl N,N-Diethylthiolcarbamate) in Mice. Agricul. Biol. Chem. 1973, 37 (1), 165-173.
https://doi.org/10.1080/00021369.1973.10860635

[13]. Wei, W.; Bao, P.; Yue, H.; Liu, S.; Wang, L.; Li, Y.; Yang, D. Visible-Light-Enabled Construction of Thiocarbamates from Isocyanides, Thiols, and Water at Room Temperature. Org. Lett. 2018, 20 (17), 5291-5295.
https://doi.org/10.1021/acs.orglett.8b02231

[14]. Weijlard, J.; Tishler, M. Some New Choline Type Thiols. J. Am. Chem. Soc. 1951, 73 (4), 1497-1500.
https://doi.org/10.1021/ja01148a025

[15]. Movassagh, B.; Soleiman-Beigi, M. Synthesis of Thiocarbamates from Thiols and Isocyanates Under Catalyst- and Solvent-Free Conditions. Monatsh. Chem. 2008, 139 (2), 137-140.
https://doi.org/10.1007/s00706-007-0762-7

[16]. Mizuno, T.; Iwai, T.; Ishino, Y. Solvent-assisted thiocarboxylation of amines and alcohols with carbon monoxide and sulfur under mild conditions. Tetrahedron 2005, 61 (38), 9157-9163.
https://doi.org/10.1016/j.tet.2005.06.114

[17]. Kim, H.; Lee, A. One-pot synthesis of carbamates and thiocarbamates from Boc-protected amines. Tetrahedron. Letters. 2016, 57 (44), 4890-4892.
https://doi.org/10.1016/j.tetlet.2016.09.038

[18]. Zhang, Q.; Queneau, Y.; Soulère, L. Biological evaluation and docking studies of new carbamate, thiocarbamate, and hydrazide analogues of acyl homoserine lactones as Vibrio fischeri-quorum sensing modulators. Biomolecules 2020, 10, 455.
https://doi.org/10.3390/biom10030455

[19]. Manne, S. R.; Thalluri, K.; Giri, R. S.; Chandra, J.; Mandal, B. Ethyl 2‐(tert‐Butoxycarbonyloxyimino)‐2‐cyanoacetate (Boc‐Oxyma): An Efficient Reagent for the Racemization Free Synthesis of Ureas, Carbamates and Thiocarbamates via Lossen Rearrangement. Adv. Synth. Catal. 2016, 359 (1), 168-176.
https://doi.org/10.1002/adsc.201600661

[20]. Schroder, U.; Beyer, L.; Dietze, F.; Richter, R.; Schmidt, S.; Hoyer, E. Ligand Properties of N-Acyl-thiocarbamic-O-alkylesters - A new class of aza-analogous 1,3-thioxoketones. J. Prakt. Chem. 1995, 337 (1), 184-188.
https://doi.org/10.1002/prac.19953370141

[21]. Lössner, L. Ueber die Einwirkung von Benzoylchlorid auf Rhodankalium in alkoholischer Lösung. J. Prakt. Chem. 1874, 10 (1), 235-261.
https://doi.org/10.1002/prac.18740100117

[22]. Dixon, A. E. CIX.-Acidylthiocarbimides. J. Chem. Soc., Trans. 1895, 67, 1040-1049.
https://doi.org/10.1039/CT8956701040

[23]. Sakamoto, M.; Tanaka, M.; Fukuda, A.; Aoyama, H.; Omote, Y. Synthesis and photolysis of 4-thioxoazetidin-2-ones. J. Chem. Soc., Perkin. Trans 1 1988, 1353.
https://doi.org/10.1039/p19880001353

[24]. Whitfield, L. L.; Papadopoulos, E. P. Heterocycles from N‐benzoylthioamides and dinucleophilic reagents. J. Heterocyclic. Chem. 1981, 18 (6), 1197-1201.
https://doi.org/10.1002/jhet.5570180626

[25]. Kulka, M. Synthesis of N-acyl-1,3-oxathiol-2-imines. Can. J. Chem. 1981, 59 (11), 1557-1559.
https://doi.org/10.1139/v81-229

[26]. Kristian, P.; Kutschy, P.; Dzurilla, M. Synthesis of 2,2,4-trisubstituted 2H-1,3-oxazetes from acyl isothiocyanates. Collect. Czech. Chem. Commun. 1979, 44 (4), 1324-1333.
https://doi.org/10.1135/cccc19791324

[27]. Oba, M.; Nishiyama, K. Deoxygenation of Aliphatic Alcohols via Reduction of New Thioxocarbamate Derivatives. Synthesis 1994, 1994 (06), 624-628.
https://doi.org/10.1055/s-1994-25536

[28]. Wu, S.; Lei, X.; Fan, E.; Sun, Z. Thermolysis-Induced Two- or Multicomponent Tandem Reactions Involving Isocyanides and Sulfenic-Acid-Generating Sulfoxides: Access to Diverse Sulfur-Containing Functional Scaffolds. Org. Lett. 2018, 20 (3), 522-525.
https://doi.org/10.1021/acs.orglett.7b03593

[29]. Sardarian, A. R.; Inaloo, I. D.; Modarresi-Alam, A. R. Highly efficient synthesis of alkyl and aryl primary thiocarbamates and dithiocarbamates under metal- and solvent-free conditions. Mol. Divers. 2018, 22, 863-878.
https://doi.org/10.1007/s11030-018-9831-6

[30]. Grzyb, J. A.; Shen, M.; Yoshina-Ishii, C.; Chi, W.; Brown, R.; Batey, R. A. Carbamoylimidazolium and thiocarbamoylimidazolium salts: novel reagents for the synthesis of ureas, thioureas, carbamates, thiocarbamates and amides. Tetrahedron 2005, 61 (30), 7153-7175.
https://doi.org/10.1016/j.tet.2005.05.056

[31]. Plutín, A. M.; Suárez, M.; Ochoa, E.; Machado, T.; Mocelo, R.; Concellón, J. M.; Rodríguez-Solla, H. Synthesis of new acyl, furoyl, and benzoylthiocarbamates as polydentate systems. Structural study of isopropyl N-(2-furoyl)thiocarbamate. Tetrahedron 2005, 61 (24), 5812-5817.
https://doi.org/10.1016/j.tet.2005.04.018

[32]. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A.; Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42 (2), 339-341.
https://doi.org/10.1107/S0021889808042726

[33]. Palatinus, L.; Steurer, W.; Chapuis, G. Extending the charge-flipping method towards structure solution from incomplete data sets. J. Appl. Crystallogr. 2007, 40 (3), 456-462.
https://doi.org/10.1107/S0021889807007637

[34]. Palatinus, L.; van der Lee, A. Symmetry determination following structure solution inP1. J. Appl. Crystallogr. 2008, 41 (6), 975-984.
https://doi.org/10.1107/S0021889808028185

[35]. Palatinus, L.; Prathapa, S. J.; van Smaalen, S. EDMA: a computer program for topological analysis of discrete electron densities. J. Appl. Crystallogr. 2012, 45 (3), 575-580.
https://doi.org/10.1107/S0021889812016068

[36]. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta. Crystallogr. C. Struct. Chem. 2015, 71 (1), 3-8.
https://doi.org/10.1107/S2053229614024218

[37]. Spek, A. L. PLATON SQUEEZE: a tool for the calculation of the disordered solvent contribution to the calculated structure factors. Acta. Crystallogr. C. Struct. Chem. 2015, 71 (1), 9-18.
https://doi.org/10.1107/S2053229614024929

[38]. Macrae, C. F.; Edgington, P. R.; McCabe, P.; Pidcock, E.; Shields, G. P.; Taylor, R.; Towler, M.; van de Streek, J. Mercury: visualization and analysis of crystal structures. J. Appl. Crystallogr. 2006, 39 (3), 453-457.
https://doi.org/10.1107/S002188980600731X

[39]. Spackman, P. R.; Turner, M. J.; McKinnon, J. J.; Wolff, S. K.; Grimwood, D. J.; Jayatilaka, D.; Spackman, M. A. CrystalExplorer: a program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. J. Appl. Crystallogr. 2021, 54 (3), 1006-1011.
https://doi.org/10.1107/S1600576721002910

[40]. McKinnon, J. J.; Jayatilaka, D.; Spackman, M. A. Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces. Chem. Commun. 2007, 3814.
https://doi.org/10.1039/b704980c

[41]. Spackman, M. A.; Jayatilaka, D. Hirshfeld surface analysis. CrystEngComm. 2009, 11 (1), 19-32.
https://doi.org/10.1039/B818330A

[42]. Alizada, A.; Arslan, H. Experimental and theoretical studies of a thiourea derivative: 1-(4-chloro-benzoyl)-3-(2-trifluoromethyl-phenyl)thiourea. J. Mol. Struc. 2023, 1279, 134996.
https://doi.org/10.1016/j.molstruc.2023.134996

[43]. Oztaslar, A.; Arslan, H. N-((2-Acetylphenyl)carbamothioyl) benzamide: Synthesis, crystal structure analysis, and theoretical studies. Karbala. International Journal of Modern Science 2023, 9 (3), https://doi.org/10.33640/2405-609x.3304.
https://doi.org/10.33640/2405-609X.3304

[44]. Yilmaz, E. A.; Solmaz, U.; Arslan, H. Experimental and theoretical analyses of the structural composition and supramolecular structures of selenoureas: Evaluating antioxidant activity. J. Mol. Struct. 2026, 1350, 144055.
https://doi.org/10.1016/j.molstruc.2025.144055

[45]. Solmaz, U.; Keskin, E.; Arslan, H. Palladium(II) complexes of thiobenzamide derivative ligands: Synthesis, crystal structure, supramolecular architecture, Hirshfeld surface analysis, and in vitro antibacterial and antifungal activities. J. Mol. Struct. 2024, 1308, 138103.
https://doi.org/10.1016/j.molstruc.2024.138103

[46]. Uysal, M. E.; Solmaz, U.; Arslan, H. Ru(II) and Ru(III) complexes containing N‐acylthiourea ligands: Supramolecular structures and synthons, reduction, and reaction pathway of aromatic nitro compounds. Appl. Organometal. Chem. 2023, 37 (7), https://doi.org/10.1002/aoc.7107.
https://doi.org/10.1002/aoc.7107

[47]. Solmaz, U.; Arslan, H. Spectral, crystallographic, theoretical, and catalytic activity studies of the PdII complexes in different coordination modes of benzoylthiourea ligand. J. Mol. Struct. 2022, 1269, 133839.
https://doi.org/10.1016/j.molstruc.2022.133839

[48]. Allen, F. H.; Kennard, O.; Watson, D. G.; Brammer, L.; Orpen, A. G.; Taylor, R. Tables of bond lengths determined by X-ray and neutron diffraction. Part 1. Bond lengths in organic compounds. J. Chem. Soc., Perkin. Trans. 2 1987, S1.
https://doi.org/10.1039/p298700000s1

[49]. Ozer, C. K.; Solmaz, U.; Arslan, H. Crystal structure, Hirshfeld surface analysis, and DFT studies of N-(2-chlorophenylcarbamothioyl) cyclohexanecarboxamide. Eur. J. Chem. 2021, 12 (4), 439-449.
https://doi.org/10.5155/eurjchem.12.4.439-449.2196

[50]. Gumus, I.; Solmaz, U.; Binzet, G.; Keskin, E.; Arslan, B.; Arslan, H. Supramolecular self-assembly of new thiourea derivatives directed by intermolecular hydrogen bonds and weak interactions: crystal structures and Hirshfeld surface analysis. Res. Chem. Intermed. 2018, 45 (2), 169-198.
https://doi.org/10.1007/s11164-018-3596-5

[51]. Gumus, I.; Solmaz, U.; Binzet, G.; Keskin, E.; Arslan, B.; Arslan, H. Hirshfeld surface analyses and crystal structures of supramolecular self-assembly thiourea derivatives directed by non-covalent interactions. J. Mol. Struct. 2018, 1157, 78-88.
https://doi.org/10.1016/j.molstruc.2017.12.017

[52]. Spackman, M. A.; McKinnon, J. J. Fingerprinting intermolecular interactions in molecular crystals. CrystEngComm. 2002, 4, 378-392.
https://doi.org/10.1039/B203191B

[53]. Spackman, M. A.; McKinnon, J. J.; Jayatilaka, D. Electrostatic potentials mapped on Hirshfeld surfaces provide direct insight into intermolecular interactions in crystals. CrystEngComm. 2008, 10, 377-388.
https://doi.org/10.1039/b715227b

[54]. Somashekar, M. N.; Chetana, P. R.; Chethan, B. S.; Rajegowda, H. R.; Cooper, M. A.; Ziora, Z. M.; Lokanath, N. K.; Ganapathy, P. S. S.; Srinatha, B. S. Synthesis and characterization of Zinc(II) complex with ONO donor type new phenylpropanehydrazide based ligand: Crystal structure, Hirshfeld surface analysis, DFT, energy frameworks and molecular docking. J. Mol. Struct. 2022, 1255, 132429.
https://doi.org/10.1016/j.molstruc.2022.132429

[55]. Clausen, H. F.; Chevallier, M. S.; Spackman, M. A.; Iversen, B. B. Three new co-crystals of hydroquinone: crystal structures and Hirshfeld surface analysis of intermolecular interactions. New J. Chem. 2010, 34, 193-199.
https://doi.org/10.1039/B9NJ00463G

[56]. Keskin, E.; Solmaz, U.; Arslan, H. NNN type pincer Pd (II) complexes of pyridine-2,6-dicarboxamides: Catalytic activity and supramolecular formation. J. Mol. Struct. 2025, 1322, 140462.
https://doi.org/10.1016/j.molstruc.2024.140462

[57]. Keskin, E.; Arslan, H. Synthesis, crystal structure, DFT calculations, and Hirshfeld surface analysis of an NNN pincer type compound. J. Mol. Struct. 2023, 1283, 135252.
https://doi.org/10.1016/j.molstruc.2023.135252

Supporting Agencies

Mersin University Scientific Research Projects Coordination Unit (Project Number: 2024-TP3-5145) and The Advanced Technology Education, Research and Application Center of Mersin University, Mersin, Türkiye.
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

License Terms

by-nc

Copyright © 2025 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).