European Journal of Chemistry 2019, 10(4), 386-402 | doi: https://doi.org/10.5155/eurjchem.10.4.386-402.1921 | Get rights and content

Issue cover




Crossmark

  Open Access OPEN ACCESS | Open Access PEER-REVIEWED | RESEARCH ARTICLE | DOWNLOAD PDF | VIEW FULL-TEXT PDF | TOTAL VIEWS

Vibrational spectroscopic and Hirshfeld surface analysis of N,N'-(azanediylbis(2,1-phenylene))bis(2-chloropropanamide)


Aysegul Suzan Polat (1,*) orcid , Ilkay Gumus (2) orcid , Hakan Arslan (3) orcid

(1) Department of Chemistry, Faculty of Arts and Science, Mersin University, Mersin, 33343, Turkey
(2) Department of Basic Sciences, Faculty of Maritime, Mersin University, Mersin, 33343, Turkey
(3) Department of Chemistry, Faculty of Arts and Science, Mersin University, Mersin, 33343, Turkey
(*) Corresponding Author

Received: 02 Sep 2019 | Revised: 22 Oct 2019 | Accepted: 26 Oct 2019 | Published: 31 Dec 2019 | Issue Date: December 2019

Abstract


The title molecule, N,N'-(azanediylbis(2,1-phenylene))bis(2-chloropropanamide) (LNNN) was synthesized and characterized by means of Hirshfeld surface analysis and vibrational (FT-IR and RAMAN) studies. Ab-initio Hartree-Fock (HF) and density functional theory (DFT; BLYP, B3LYP, B3PW91 and mPW1PW91) calculations were accomplished using 6-31G(d,p) and 6-311G(d,p) basis sets. The comparison of calculated bond lengths and angles with X-ray crystal structure shows sufficient agreement. The solid phase FT-IR and FT-RAMAN spectra of LNNN have been recorded in the regions 4000-525 cm-1 and 4000-50 cm-1, respectively. A comparative analysis between the calculated and experimental vibrational frequencies was carried out and significant bands were assigned. The results indicated a good correlation between experimental and theoretical IR and RAMAN frequencies. A detailed analysis of the intermolecular interactions via Hirshfeld surface analysis and fingerprint plots revealed that supramolecular structure of the LNNN is stabilized mainly by the formation of H···H, C···H, Cl···H ve O···H  intermolecular interactions.


Announcements


Our editors have decided to support scientists to publish their manuscripts in European Journal of Chemistry without any financial constraints.

1- The article processing fee will not be charged from the articles containing the single-crystal structure characterization or a DFT study between September 15, 2023 and October 31, 2023 (Voucher code: FALL2023).

2. A 50% discount will be applied to the article processing fee for submissions made between September 15, 2023 and October 31, 2023 by authors who have at least one publication in the European Journal of Chemistry (Voucher code: AUTHOR-3-2023).

3. Young writers will not be charged for the article processing fee between September 15, 2023 and October 31, 2023 (Voucher code: YOUNG2023).


Editor-in-Chief
European Journal of Chemistry

Keywords


Vibration spectrum; Ab initio calculations; Infrared spectroscopy; Redox active compound; Density functional theory; Hirshfeld surface analysis

Full Text:

PDF
PDF    Open Access

DOI: 10.5155/eurjchem.10.4.386-402.1921

Links for Article


| | | | | | |

| | | | | | |

| | | |

Related Articles




Article Metrics

icon graph This Abstract was viewed 1119 times | icon graph PDF Article downloaded 484 times

Funding information


This study was supported by Research Fund of Mersin University in Turkey with Project Number: 2018-1-TP2-2800.

References


[1]. Lyaskovskyy, V.; Bruin, B. Am. Chem. Soc. Catal. 2012, 2, 270-279.
https://doi.org/10.1021/cs200660v

[2]. Allgeier, A. M.; Mirkin, C. A. Angew. Chem., Int. Edit. 1998 37, 894-908.
https://doi.org/10.1002/(SICI)1521-3773(19980420)37:7<894::AID-ANIE894>3.3.CO;2-C

[3]. Wile, B. M.; Trovitch, R. J.; Bart, S. C.; Tondreau, A. M.; Lobkovsky, E.; Milsmann, C.; Bill, E.; Wieghardt, K.; Chirik, P. J. Inorg. Chem. 2009, 48(9), 4190-4200.
https://doi.org/10.1021/ic801623m

[4]. Bart, S. C.; Lobkovsky, E.; Bill, E.; Chirik; P. J. J. Am. Chem. Soc. 2006, 128(16), 5302-5303.
https://doi.org/10.1021/ja057165y

[5]. Tondreau, A. M.; Milsmann, C.; Patrick, A. D.; Hoyt, H. M.; Lobkovsky, E.; Wieghardt, K.; Chirik, P. J. J. Am. Chem. Soc. 2010, 132(42), 15046-15059.
https://doi.org/10.1021/ja106575b

[6]. Skabara, P. J.; Pozo-Gonzalo, C.; Lardies, M. N.; Laguna, M.; Cerrada, E.; Luquin, A.; Gonzalez, B.; Coles, S. J.; Hursthouse, M. B.; Harrington, R. W.; Clegg, W. Dalton Trans. 2008, 23, 3070-3079.
https://doi.org/10.1039/b801187g

[7]. Mukherjee, C.; Pieper, U.; Bothe, E.; Bachler, V.; Bill, E.; Weyhermuller, T.; Chaudhuri, P. Inorg. Chem. 2008, 47(19), 8943-8956.
https://doi.org/10.1021/ic8009767

[8]. Zhu, D.; Thapa, I.; Korobkov, I.; Gambarotta, S.; Budzelaar, P. H. M. Inorg. Chem. 2011, 50, 9879-9887.
https://doi.org/10.1021/ic2002145

[9]. Dzik, W. I.; Van Der Vlugt, J. I.; Reek, J. N. H.; De Bruin, B. Angew. Chem., Int. Ed. 2011, 50, 3356-3358.
https://doi.org/10.1002/anie.201006778

[10]. Hindson, K.; De Bruin, B. Eur. J. Inorg. Chem. 2012, 3, 340-580.
https://doi.org/10.1002/ejic.v2012.3

[11]. Kaim, W. Coord. Chem. Rev. 1987, 76, 187-235.
https://doi.org/10.1016/0010-8545(87)85004-X

[12]. Chirik, P.J. Inorg. Chem. 2011, 50(20), 9737-9914.
https://doi.org/10.1021/ic201881k

[13]. Van der Vlugt, J. I., Eur. J. Inorg. Chem. 2012, 3, 363-375.
https://doi.org/10.1002/ejic.201100752

[14]. Dzik, W. I.; Zhang, P. X.; de Bruin, B. Inorg. Chem. 2011, 50(20), 9896-9903.
https://doi.org/10.1021/ic200043a

[15]. Kaim, W. Coord. Chem. Rev. 2010, 254, 1580-1588.
https://doi.org/10.1016/j.ccr.2010.01.009

[16]. Nawn, G.; Waldie, K. M.; Oakley, S. R.; Peters, B. D.; Mandel, D.; Patrick, B. P.; McDonald, R.; Hicks, R. G. Inorg. Chem. 2011, 50, 9826-9837.
https://doi.org/10.1021/ic200388y

[17]. Bowman, A. C.; Milsmann, C.; Hojilla, A. C. C.; Lobkovsky, E.; Wieghardt, K.; Chirik, P. J. J. Am. Chem. Soc. 2010, 132(5), 1676-1684.
https://doi.org/10.1021/ja908955t

[18]. Bowman, C. A.; Milsmann, C.; Bill, E.; Lobkovsky, E.; Weyhermüller, T.; Wieghardt, K.; Chirik, P. J. Inorg. Chem. 2010, 49(13), 6110-6123.
https://doi.org/10.1021/ic100717w

[19]. Manuel, T. D.; Rohde, J. U. Am. Chem. Soc. 2009, 131(43), 15582-15583.
https://doi.org/10.1021/ja9065943

[20]. Rolle, C. J.; Hardcastle, K. I.; Soper, J. D. Inorg. Chem. 2008, 47(6), 1892-1894.
https://doi.org/10.1021/ic702390q

[21]. Vlcek, A. Coord. Chem. Rev. 2010, 254(13-14), 1357-1357.
https://doi.org/10.1016/j.ccr.2010.01.015

[22]. Ward, M. D.; McCleverty, J. A. J. Chem. Soc. Dalton Trans. 2002, 3, 275-288.
https://doi.org/10.1039/b110131p

[23]. Smith, A. L.; Hardcastle, K. I.; Soper, J. D. J. Am. Chem. Soc. 2010, 132, 14358-14360.
https://doi.org/10.1021/ja106212w

[24]. Arslan, H. Ligand design studies for metal catalyzed oxidation reactions, TUBITAK Project no: 112T322, 2012.

[25]. Polat, A. S., MSc Thesis, Mersin University, Mersin, Turkey, 2019.

[26]. Polat, A. S.; Gumus, I.; Arslan, H. Int. Eng. Nat. Sci. Conf. Book, Diyarbakir, Turkey, 2019.

[27]. Aydogdu, S. I., MSc Thesis, Mersin University, Mersin, Turkey, 2019.

[28]. Aydogdu, I.; Gumus, I.; Arslan, H. Int. Eng. Nat. Sci. Conf. Book, Diyarbakir, Turkey, 2019.

[29]. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A.; Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 16, Revision C.01, Gaussian, Inc.; Wallingford CT, 2016.

[30]. Dennington, R.; Keith, T. A.; Millam, J. M. GaussView, Version 6, Semichem Inc.; Shawnee Mission, KS, 2016.

[31]. Moller, C.; Plesset, M.S. Phys. Rev. 1934, 46(7), 618-622.
https://doi.org/10.1103/PhysRev.46.618

[32]. Becke, A.D. J. Chem. Phys. 1993, 98(7), 5648-5652.
https://doi.org/10.1063/1.464913

[33]. Lee, C.; Yang, W.; Parr, R.G. Phys. Rev. B 1988, 37(2), 785-789.
https://doi.org/10.1103/PhysRevB.37.785

[34]. Adamo, C.; Barone, V. J. Chem. Phys. 1998, 108(2), 664-675.
https://doi.org/10.1063/1.475428

[35]. Burke, K.; Perdew, J.P.; Wang, Y.; Dobson, J.F.; Vignale, G. M.P. Das (Eds.), Electronic Density Functional Theory: Recent Progress and New Directions, Plenum Press, New York, 1998.

[36]. Predew, J.P.; Wang, Y. Phys. Rev. B 1992, 45(23), 13244-13249.
https://doi.org/10.1103/PhysRevB.45.13244

[37]. Foresman, B.; Frisch, E. Exploring Chemistry with Electronic Structure Methods: a Guide to Using Gaussian, Gaussian Pitttsburg, PA, 1993.

[38]. Scott, A. P.; Radom, L. J. Chem. 1996, 100, 16502-16513.
https://doi.org/10.1021/jp960976r

[39]. Arslan, H.; Algul, O.; Dundar, Y. Vib. Spectrosc. 2007, 44, 248-255
https://doi.org/10.1016/j.vibspec.2006.12.003

[40]. Arslan, H.; Algul, O. Spectrochim. Acta A 2008, 70, 109-116
https://doi.org/10.1016/j.saa.2007.07.027

[41]. Yabalak, E.; Gunay, F.; Kasumov, V.; Arslan, H. Spectrochim. Acta A 2013, 110, 291-303
https://doi.org/10.1016/j.saa.2013.03.003

[42]. Arslan, H.; Mansuroglu, D.; Vanderveer, D.; Binzet, G. Spectrochim. Acta A 2009, 72, 561-571.
https://doi.org/10.1016/j.saa.2008.10.049

[43]. Arslan, H.; Demircan, A. Int. J. Mol. Sci. 2007, 8, 1064-1082.
https://doi.org/10.3390/i8111064

[44]. Arslan, H.; Floerke, U.; Kulcu, N.; Binzet, G. Spectrochim. Acta A 2007, 68, 1347-1355.
https://doi.org/10.1016/j.saa.2007.02.015

[45]. Panchenko, Y. N. J. Mol. Struct. 2001, 567-568, 217-230.
https://doi.org/10.1016/S0022-2860(01)00555-5

[46]. Rauhut, G.; Pulay, P. J. Phys. Chem. 1995, 99(10), 3093-3100.
https://doi.org/10.1021/j100010a019

[47]. Arslan, H. Performance Analysis of Vibrational Frequencies, 1.0, Mersin, Turkey, 2007.

[48]. Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88(6), 899-926.
https://doi.org/10.1021/cr00088a005

[49]. Glendening, E. D.; Reed, A. E.; Carpenter, J. E.; Weinhold, F. J. Am. Chem. Soc. 1998, 120(46), 12051-12068.
https://doi.org/10.1021/ja980917m

[50]. Turner, M. J.; McKinnon, J. J.; Wolff, S. K.; Grimwood, D. J.; Spackman, P. R.; Jayatilaka, D.; Spackman, M. A. CrystalExplorer17, University of Western Australia, http://hirshfeldsurface.net, 2017.

[51]. Socrates, G. Infrared and Raman Characteristic Group Frequencies, John Wiley & Sons Ltd. Chichester, 2001.

[52]. Silverstein, R.M.; Webster, F.X.; Kiemle, D.J.; Bryce, D.J. Spectrometric Identification of Organic Compounds, Wiley, 2014.

[53]. Colt, N. B.; Daly, L. H.; Wiberly S. E. Introduction to Infrared and Raman Spectroscopy, 3th edition, Academic Press, Boston, 1990.

[54]. Lebas, J. M.; Garrigou-Lagrange, C.; Josien, M. L. Spectrochim. Acta 1959, 15, 225-235.
https://doi.org/10.1016/S0371-1951(59)80311-8

[55]. Wiberley, S. E.; Bunce, S. C.; Bauner, W. H. Anal. Chem. 1960, 32, 217-221.
https://doi.org/10.1021/ac60158a025

[56]. Linvien, D.; Cothup, N.B.; Fateley, W.G.; Graselli, J.G., The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules, Academic Press, Boston, 1991.

[57]. Beaula, T. J.; Joe, I. H.; Rastogi, V. K.; Jothy, V. B. Chem. Phys. Lett. 2015, 624, 93-101.
https://doi.org/10.1016/j.cplett.2015.02.026

[58]. Abraham, C. S.; Prasana, J. C.; Muthu, S. Spectrochim. Acta Mol. Biomol Spectrosc. 2017, 181, 153-163.
https://doi.org/10.1016/j.saa.2017.03.045

[59]. Mulliken, R.S. J. Chem. Phys. 1955, 23, 1833-1840.
https://doi.org/10.1063/1.1740588

[60]. Wang, J. W.; Zhang, Y. W.; Wang, M. X.; Luo, Y. H.; Sun, B. W. Polyhedron 2017, 124, 243-250.
https://doi.org/10.1016/j.poly.2016.12.045

[61]. Spackman, M. A.; Jayatilaka, D. Cryst. Eng. Commun. 2009, 11, 19-32.
https://doi.org/10.1039/B818330A


Supporting information


The Supplementary Material for this article can be found online at: Supplementary files

How to cite


Polat, A.; Gumus, I.; Arslan, H. Eur. J. Chem. 2019, 10(4), 386-402. doi:10.5155/eurjchem.10.4.386-402.1921
Polat, A.; Gumus, I.; Arslan, H. Vibrational spectroscopic and Hirshfeld surface analysis of N,N'-(azanediylbis(2,1-phenylene))bis(2-chloropropanamide). Eur. J. Chem. 2019, 10(4), 386-402. doi:10.5155/eurjchem.10.4.386-402.1921
Polat, A., Gumus, I., & Arslan, H. (2019). Vibrational spectroscopic and Hirshfeld surface analysis of N,N'-(azanediylbis(2,1-phenylene))bis(2-chloropropanamide). European Journal of Chemistry, 10(4), 386-402. doi:10.5155/eurjchem.10.4.386-402.1921
Polat, Aysegul, Ilkay Gumus, & Hakan Arslan. "Vibrational spectroscopic and Hirshfeld surface analysis of N,N'-(azanediylbis(2,1-phenylene))bis(2-chloropropanamide)." European Journal of Chemistry [Online], 10.4 (2019): 386-402. Web. 8 Dec. 2023
Polat, Aysegul, Gumus, Ilkay, AND Arslan, Hakan. "Vibrational spectroscopic and Hirshfeld surface analysis of N,N'-(azanediylbis(2,1-phenylene))bis(2-chloropropanamide)" European Journal of Chemistry [Online], Volume 10 Number 4 (31 December 2019)

The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item



DOI Link: https://doi.org/10.5155/eurjchem.10.4.386-402.1921


CrossRef | Scilit | GrowKudos | Researchgate | Publons | ScienceGate | Scite | Lens | OUCI

WorldCat Paperbuzz | LibKey Citeas | Dimensions | Semanticscholar | Plumx | Kopernio | Zotero | Mendeley

ZoteroSave to Zotero MendeleySave to Mendeley



European Journal of Chemistry 2019, 10(4), 386-402 | doi: https://doi.org/10.5155/eurjchem.10.4.386-402.1921 | Get rights and content

Refbacks

  • There are currently no refbacks.




Copyright (c) 2019 Authors

Creative Commons License
This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at http://www.eurjchem.com/index.php/eurjchem/pages/view/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (http://www.eurjchem.com/index.php/eurjchem/pages/view/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).



© Copyright 2010 - 2023  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2010-2023 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.