European Journal of Chemistry

Vibrational spectroscopic and Hirshfeld surface analysis of N,N'-(azanediylbis(2,1-phenylene))bis(2-chloropropanamide)

Crossmark


Main Article Content

Aysegul Suzan Polat
Ilkay Gumus
Hakan Arslan

Abstract

The title molecule, N,N'-(azanediylbis(2,1-phenylene))bis(2-chloropropanamide) (LNNN) was synthesized and characterized by means of Hirshfeld surface analysis and vibrational (FT-IR and RAMAN) studies. Ab-initio Hartree-Fock (HF) and density functional theory (DFT; BLYP, B3LYP, B3PW91 and mPW1PW91) calculations were accomplished using 6-31G(d,p) and 6-311G(d,p) basis sets. The comparison of calculated bond lengths and angles with X-ray crystal structure shows sufficient agreement. The solid phase FT-IR and FT-RAMAN spectra of LNNN have been recorded in the regions 4000-525 cm-1 and 4000-50 cm-1, respectively. A comparative analysis between the calculated and experimental vibrational frequencies was carried out and significant bands were assigned. The results indicated a good correlation between experimental and theoretical IR and RAMAN frequencies. A detailed analysis of the intermolecular interactions via Hirshfeld surface analysis and fingerprint plots revealed that supramolecular structure of the LNNN is stabilized mainly by the formation of H···H, C···H, Cl···H ve O···H  intermolecular interactions.


icon graph This Abstract was viewed 1217 times | icon graph Article PDF downloaded 537 times icon graph Article CIF FILE downloaded 0 times

How to Cite
(1)
Polat, A. S.; Gumus, I.; Arslan, H. Vibrational Spectroscopic and Hirshfeld Surface Analysis of N,N’-(azanediylbis(2,1-phenylene) bis(2-Chloropropanamide). Eur. J. Chem. 2019, 10, 386-402.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Lyaskovskyy, V.; Bruin, B. Am. Chem. Soc. Catal. 2012, 2, 270-279.
https://doi.org/10.1021/cs200660v

[2]. Allgeier, A. M.; Mirkin, C. A. Angew. Chem., Int. Edit. 1998 37, 894-908.
https://doi.org/10.1002/(SICI)1521-3773(19980420)37:7<894::AID-ANIE894>3.3.CO;2-C

[3]. Wile, B. M.; Trovitch, R. J.; Bart, S. C.; Tondreau, A. M.; Lobkovsky, E.; Milsmann, C.; Bill, E.; Wieghardt, K.; Chirik, P. J. Inorg. Chem. 2009, 48(9), 4190-4200.
https://doi.org/10.1021/ic801623m

[4]. Bart, S. C.; Lobkovsky, E.; Bill, E.; Chirik; P. J. J. Am. Chem. Soc. 2006, 128(16), 5302-5303.
https://doi.org/10.1021/ja057165y

[5]. Tondreau, A. M.; Milsmann, C.; Patrick, A. D.; Hoyt, H. M.; Lobkovsky, E.; Wieghardt, K.; Chirik, P. J. J. Am. Chem. Soc. 2010, 132(42), 15046-15059.
https://doi.org/10.1021/ja106575b

[6]. Skabara, P. J.; Pozo-Gonzalo, C.; Lardies, M. N.; Laguna, M.; Cerrada, E.; Luquin, A.; Gonzalez, B.; Coles, S. J.; Hursthouse, M. B.; Harrington, R. W.; Clegg, W. Dalton Trans. 2008, 23, 3070-3079.
https://doi.org/10.1039/b801187g

[7]. Mukherjee, C.; Pieper, U.; Bothe, E.; Bachler, V.; Bill, E.; Weyhermuller, T.; Chaudhuri, P. Inorg. Chem. 2008, 47(19), 8943-8956.
https://doi.org/10.1021/ic8009767

[8]. Zhu, D.; Thapa, I.; Korobkov, I.; Gambarotta, S.; Budzelaar, P. H. M. Inorg. Chem. 2011, 50, 9879-9887.
https://doi.org/10.1021/ic2002145

[9]. Dzik, W. I.; Van Der Vlugt, J. I.; Reek, J. N. H.; De Bruin, B. Angew. Chem., Int. Ed. 2011, 50, 3356-3358.
https://doi.org/10.1002/anie.201006778

[10]. Hindson, K.; De Bruin, B. Eur. J. Inorg. Chem. 2012, 3, 340-580.
https://doi.org/10.1002/ejic.v2012.3

[11]. Kaim, W. Coord. Chem. Rev. 1987, 76, 187-235.
https://doi.org/10.1016/0010-8545(87)85004-X

[12]. Chirik, P.J. Inorg. Chem. 2011, 50(20), 9737-9914.
https://doi.org/10.1021/ic201881k

[13]. Van der Vlugt, J. I., Eur. J. Inorg. Chem. 2012, 3, 363-375.
https://doi.org/10.1002/ejic.201100752

[14]. Dzik, W. I.; Zhang, P. X.; de Bruin, B. Inorg. Chem. 2011, 50(20), 9896-9903.
https://doi.org/10.1021/ic200043a

[15]. Kaim, W. Coord. Chem. Rev. 2010, 254, 1580-1588.
https://doi.org/10.1016/j.ccr.2010.01.009

[16]. Nawn, G.; Waldie, K. M.; Oakley, S. R.; Peters, B. D.; Mandel, D.; Patrick, B. P.; McDonald, R.; Hicks, R. G. Inorg. Chem. 2011, 50, 9826-9837.
https://doi.org/10.1021/ic200388y

[17]. Bowman, A. C.; Milsmann, C.; Hojilla, A. C. C.; Lobkovsky, E.; Wieghardt, K.; Chirik, P. J. J. Am. Chem. Soc. 2010, 132(5), 1676-1684.
https://doi.org/10.1021/ja908955t

[18]. Bowman, C. A.; Milsmann, C.; Bill, E.; Lobkovsky, E.; Weyhermüller, T.; Wieghardt, K.; Chirik, P. J. Inorg. Chem. 2010, 49(13), 6110-6123.
https://doi.org/10.1021/ic100717w

[19]. Manuel, T. D.; Rohde, J. U. Am. Chem. Soc. 2009, 131(43), 15582-15583.
https://doi.org/10.1021/ja9065943

[20]. Rolle, C. J.; Hardcastle, K. I.; Soper, J. D. Inorg. Chem. 2008, 47(6), 1892-1894.
https://doi.org/10.1021/ic702390q

[21]. Vlcek, A. Coord. Chem. Rev. 2010, 254(13-14), 1357-1357.
https://doi.org/10.1016/j.ccr.2010.01.015

[22]. Ward, M. D.; McCleverty, J. A. J. Chem. Soc. Dalton Trans. 2002, 3, 275-288.
https://doi.org/10.1039/b110131p

[23]. Smith, A. L.; Hardcastle, K. I.; Soper, J. D. J. Am. Chem. Soc. 2010, 132, 14358-14360.
https://doi.org/10.1021/ja106212w

[24]. Arslan, H. Ligand design studies for metal catalyzed oxidation reactions, TUBITAK Project no: 112T322, 2012.

[25]. Polat, A. S., MSc Thesis, Mersin University, Mersin, Turkey, 2019.

[26]. Polat, A. S.; Gumus, I.; Arslan, H. Int. Eng. Nat. Sci. Conf. Book, Diyarbakir, Turkey, 2019.

[27]. Aydogdu, S. I., MSc Thesis, Mersin University, Mersin, Turkey, 2019.

[28]. Aydogdu, I.; Gumus, I.; Arslan, H. Int. Eng. Nat. Sci. Conf. Book, Diyarbakir, Turkey, 2019.

[29]. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A.; Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 16, Revision C.01, Gaussian, Inc.; Wallingford CT, 2016.

[30]. Dennington, R.; Keith, T. A.; Millam, J. M. GaussView, Version 6, Semichem Inc.; Shawnee Mission, KS, 2016.

[31]. Moller, C.; Plesset, M.S. Phys. Rev. 1934, 46(7), 618-622.
https://doi.org/10.1103/PhysRev.46.618

[32]. Becke, A.D. J. Chem. Phys. 1993, 98(7), 5648-5652.
https://doi.org/10.1063/1.464913

[33]. Lee, C.; Yang, W.; Parr, R.G. Phys. Rev. B 1988, 37(2), 785-789.
https://doi.org/10.1103/PhysRevB.37.785

[34]. Adamo, C.; Barone, V. J. Chem. Phys. 1998, 108(2), 664-675.
https://doi.org/10.1063/1.475428

[35]. Burke, K.; Perdew, J.P.; Wang, Y.; Dobson, J.F.; Vignale, G. M.P. Das (Eds.), Electronic Density Functional Theory: Recent Progress and New Directions, Plenum Press, New York, 1998.

[36]. Predew, J.P.; Wang, Y. Phys. Rev. B 1992, 45(23), 13244-13249.
https://doi.org/10.1103/PhysRevB.45.13244

[37]. Foresman, B.; Frisch, E. Exploring Chemistry with Electronic Structure Methods: a Guide to Using Gaussian, Gaussian Pitttsburg, PA, 1993.

[38]. Scott, A. P.; Radom, L. J. Chem. 1996, 100, 16502-16513.
https://doi.org/10.1021/jp960976r

[39]. Arslan, H.; Algul, O.; Dundar, Y. Vib. Spectrosc. 2007, 44, 248-255
https://doi.org/10.1016/j.vibspec.2006.12.003

[40]. Arslan, H.; Algul, O. Spectrochim. Acta A 2008, 70, 109-116
https://doi.org/10.1016/j.saa.2007.07.027

[41]. Yabalak, E.; Gunay, F.; Kasumov, V.; Arslan, H. Spectrochim. Acta A 2013, 110, 291-303
https://doi.org/10.1016/j.saa.2013.03.003

[42]. Arslan, H.; Mansuroglu, D.; Vanderveer, D.; Binzet, G. Spectrochim. Acta A 2009, 72, 561-571.
https://doi.org/10.1016/j.saa.2008.10.049

[43]. Arslan, H.; Demircan, A. Int. J. Mol. Sci. 2007, 8, 1064-1082.
https://doi.org/10.3390/i8111064

[44]. Arslan, H.; Floerke, U.; Kulcu, N.; Binzet, G. Spectrochim. Acta A 2007, 68, 1347-1355.
https://doi.org/10.1016/j.saa.2007.02.015

[45]. Panchenko, Y. N. J. Mol. Struct. 2001, 567-568, 217-230.
https://doi.org/10.1016/S0022-2860(01)00555-5

[46]. Rauhut, G.; Pulay, P. J. Phys. Chem. 1995, 99(10), 3093-3100.
https://doi.org/10.1021/j100010a019

[47]. Arslan, H. Performance Analysis of Vibrational Frequencies, 1.0, Mersin, Turkey, 2007.

[48]. Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88(6), 899-926.
https://doi.org/10.1021/cr00088a005

[49]. Glendening, E. D.; Reed, A. E.; Carpenter, J. E.; Weinhold, F. J. Am. Chem. Soc. 1998, 120(46), 12051-12068.
https://doi.org/10.1021/ja980917m

[50]. Turner, M. J.; McKinnon, J. J.; Wolff, S. K.; Grimwood, D. J.; Spackman, P. R.; Jayatilaka, D.; Spackman, M. A. CrystalExplorer17, University of Western Australia, http://hirshfeldsurface.net, 2017.

[51]. Socrates, G. Infrared and Raman Characteristic Group Frequencies, John Wiley & Sons Ltd. Chichester, 2001.

[52]. Silverstein, R.M.; Webster, F.X.; Kiemle, D.J.; Bryce, D.J. Spectrometric Identification of Organic Compounds, Wiley, 2014.

[53]. Colt, N. B.; Daly, L. H.; Wiberly S. E. Introduction to Infrared and Raman Spectroscopy, 3th edition, Academic Press, Boston, 1990.

[54]. Lebas, J. M.; Garrigou-Lagrange, C.; Josien, M. L. Spectrochim. Acta 1959, 15, 225-235.
https://doi.org/10.1016/S0371-1951(59)80311-8

[55]. Wiberley, S. E.; Bunce, S. C.; Bauner, W. H. Anal. Chem. 1960, 32, 217-221.
https://doi.org/10.1021/ac60158a025

[56]. Linvien, D.; Cothup, N.B.; Fateley, W.G.; Graselli, J.G., The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules, Academic Press, Boston, 1991.

[57]. Beaula, T. J.; Joe, I. H.; Rastogi, V. K.; Jothy, V. B. Chem. Phys. Lett. 2015, 624, 93-101.
https://doi.org/10.1016/j.cplett.2015.02.026

[58]. Abraham, C. S.; Prasana, J. C.; Muthu, S. Spectrochim. Acta Mol. Biomol Spectrosc. 2017, 181, 153-163.
https://doi.org/10.1016/j.saa.2017.03.045

[59]. Mulliken, R.S. J. Chem. Phys. 1955, 23, 1833-1840.
https://doi.org/10.1063/1.1740588

[60]. Wang, J. W.; Zhang, Y. W.; Wang, M. X.; Luo, Y. H.; Sun, B. W. Polyhedron 2017, 124, 243-250.
https://doi.org/10.1016/j.poly.2016.12.045

[61]. Spackman, M. A.; Jayatilaka, D. Cryst. Eng. Commun. 2009, 11, 19-32.
https://doi.org/10.1039/B818330A

Most read articles by the same author(s)

Most read articles by the same author(s)

1 2 3 4 5 6 7 8 9 10 > >> 
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).