European Journal of Chemistry

Synthesis, crystal structure, Hirshfeld surface and interaction energies analysis of 5-methyl-1,3-bis(3-nitrobenzyl)pyrimidine-2,4(1H,3H)-dione

Crossmark


Main Article Content

Koffi Senam Etse
Laura Comeron Lamela
Guillermo Zaragoza
Bernard Pirotte

Abstract

The title compound 5-methyl-1,3-bis(3-nitrobenzyl)pyrimidine-2,4(1H,3H)-dione was obtained by reaction of thymine with 3-nitrobenzylbromide in the presence of cesium carbonate. Characterization of the product was achieved by NMR spectroscopy and its stability was probed in basic condition using UV-Visible analysis. Furthermore, the molecular structure was confirmed by X-ray diffraction analysis. The compound crystallizes in orthorhombic Pna21 space group with unit cell parameters a = 14.9594 (15) Å, b = 25.711 (3) Å, c = 4.5004 (4) Å, V = 1731.0 (3) Å3 and Z = 4. The crystal packing of the title compound is stabilized by intermolecular hydrogen bond, π···π and C−H···π stacking interactions. The intermolecular interactions were furthermore analyzed through the mapping of different Hirshfeld surfaces. The two-dimensional fingerprint revealed that the most important contributions to these surfaces come from O···H (37.1%), H···H (24%) and H···C/C···H (22.6%) interactions. The interaction energies stabilizing the crystal packing were calculated and were presented graphically as framework energy diagrams. Finally, the energy-framework analysis reveals that π···π and C−H···π interactions energies are mainly dispersive and are the most important forces in the crystal.


icon graph This Abstract was viewed 1594 times | icon graph Article PDF downloaded 742 times icon graph Article CIF FILE downloaded 0 times

How to Cite
(1)
Etse, K. S.; Lamela, L. C.; Zaragoza, G.; Pirotte, B. Synthesis, Crystal Structure, Hirshfeld Surface and Interaction Energies Analysis of 5-Methyl-1,3-bis(3-nitrobenzyl)pyrimidine-2,4(1H,3H)-Dione. Eur. J. Chem. 2020, 11, 91-99.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Lagoja I. M. Chem. Biodivers. 2005, 2, 1-50.
https://doi.org/10.1002/cbdv.200490173

[2]. Honda, T.; Inagawa, H.; Fukushima, M.; Moriyama, A.; Soma, G. Clin. Chim. Acta. 2002, 322, 59-66.
https://doi.org/10.1016/S0009-8981(02)00132-8

[3]. Hadj-Bouazza, A.; Teste, K.; Colombeau, L.; Chaleix, V.; Zerrouki, R.; Kraemer, M.; Sainte Catherine, O. Nucleosides Nucleotides Nucleic Acids 2008, 27, 439-448.
https://doi.org/10.1080/15257770802086872

[4]. Balzarini, J.; Baba, M.; De Clercq. E. Antimicrob. Agents Chemother. 1995, 39, 998-1002.
https://doi.org/10.1128/AAC.39.4.998

[5]. Adamska, A.; Rumijowska-Galewicz, A.; Ruszczynska, A.; Studzinska, M.; Jablonska, A.; Paradowska, E.; Bulska, E.; Munier-Lehmann, H.; Dziadek, J.; Lesnikowski, Z. J.; Olejniczak, A. B. Eur. J. Med. Chem. 2016, 121, 71-81.
https://doi.org/10.1016/j.ejmech.2016.05.030

[6]. Bialek-Pietras, M.; Olejniczak, A. B.; Paradowsk, E.; Studzinska, M.; Jablonska, A.; Lesnikowski, Z. J. J. Organomet. Chem. 2018, 865, 166-172.
https://doi.org/10.1016/j.jorganchem.2018.03.026

[7]. Li, G.; Zhu, Y.; Yang, F.; Yang, H. Hecheng Huaxue. 2011, 19, 111-114.

[8]. Lin, T. S.; Wang, L.; Antonini, I.; Cosby, L. A.; Shiba, D. A.; Kirkpatrick, D. L.; Sartorelli, A. C. J. Med. Chem. 1986, 29, 84-89.
https://doi.org/10.1021/jm00151a014

[9]. Weaver, D. F.; Guillain, B. M.; Carran, J. R.; Jones, K. US Patent. 2002, No. 7, 501, 429 B2.

[10]. Kim, B. R.; Park, J. Y.; Jeong, H. J.; Kwon, H. J.; Park, S. J.; Lee, I. C.; Ryu, Y. B.; Lee, W. S. J. Enzyme Inhib. Med. Chem. 2018, 33, 1256-1265.
https://doi.org/10.1080/14756366.2018.1488695

[11]. Li, M.; Cai, X.; Zhu, Y.; Liu, K.; Hu, M. Acta Chim. Sinica (Chinese Edition) 2011, 69, 425-430.

[12]. Etse, K. S.; Dassonneville, B.; Zaragoza, G.; Demonceau, A. Tetrahedron Lett. 2017, 58, 789-793.
https://doi.org/10.1016/j.tetlet.2017.01.041

[13]. Manos‐Turvey, A.; Becker, G.; Francotte, P.; Serrano, M. E.; Luxen, A.; Pirotte, B.; Plenevaux, A.; Lemaire, C. Chem. Med. Chem. 2019, 14, 788-795.
https://doi.org/10.1002/cmdc.201800816

[14]. Goffin, E.; Drapier, T.; Larsen, A. P.; Geubelle, P.; Ptak, C. P.; Laulumaa, S.; Rovinskaja, K.; Gilissen, J.; Tullio, P.; Olsen, L.; Frydenvang, K.; Pirotte, B.; Hanson, J.; Oswald, R. E.; Kastrup, J. S.; Francotte, P. J. Med. Chem. 2018, 61, 1251-1264.

[15]. Etse, K. S.; Zaragoza, G.; Pirotte, B. Eur. J. Chem. 2019, 10, 189-194.
https://doi.org/10.5155/eurjchem.10.3.189-194.1903

[16]. Dolman, N. P.; More, J. C.; Alt, A.; Knauss, J. L.; Troop, H. M.; Bleakman, D.; Collingridge, G. L.; Jane, D. E. J. Med. Chem. 2006, 49, 2579-2592.
https://doi.org/10.1021/jm051086f

[17]. Drapier, T.; Geubelle, P.; Bouckaert, C.; Nielsen, L.; Laulumaa, S.; Goffin, E.; Dilly, S.; Francotte, P.; Hanson, J.; Pochet, L.; Kastrup, J. S.; Pirotte, B. J. Med. Chem. 2018, 61, 5279-529.
https://doi.org/10.1021/acs.jmedchem.8b00250

[18]. Bruker APEX II Bruker AXS Inc., Madison, WI, USA, 2004.

[19]. Sheldrick, G. M. Acta Cryst. A 2015, 71, 3-8.
https://doi.org/10.1107/S2053229614024218

[20]. Sheldrick, G. M. Acta Cryst. C 2015, 71, 3-8.
https://doi.org/10.1107/S2053229614024218

[21]. Farrugia, L. J. J. Appl. Cryst. 2012, 45, 849-854.
https://doi.org/10.1107/S0021889812029111

[22]. Macrae, C. F.; Bruno, I. J.; Chisholm, J. A.; Edgington, P. R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; Van de Streek, J.; Wood, P. A. J. Appl. Cryst. 2008, 41, 466-470.
https://doi.org/10.1107/S0021889807067908

[23]. Kaspar, K.; Giessmann, R. T.; Krausch, N.; Neubauer, P.; Wagner, A.; Gimpel, M. Methods Protoc. 2019, 2, 60-72.
https://doi.org/10.3390/mps2030060

[24]. Turner, M. J.; McKinnon, J. J.; Wolff, S. K.; Grimwood, D. J.; Spackman, P. R.; Jayatilaka, D.; Spackman, M. A. CrystalExplorer17, The University of Western Australia. http://hirshfeldsurface. net, 2017.

[25]. Spackman, M. A.; Jayatilaka, D. CrystEngComm. 2009, 11, 19-32.
https://doi.org/10.1039/B818330A

[26]. Demircioglu, Z.; Yesil, A. E.; Altun, M.; Bal-Demirci, T.; Ozdemir, N. J. Mol. Struct. 2018, 1162, 96-108.
https://doi.org/10.1016/j.molstruc.2018.02.093

[27]. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E. , Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A. Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K. , Rendell, A. , Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian16. Gaussian Inc. Wallingford, Connecticut, USA, 2016.

[28]. Turner, M. J.; Thomas, S. P.; Shi, M. W.; Jayatilaka, D.; Spackman, M. A. Chem. Commun. 2015, 51, 3735-3738.
https://doi.org/10.1039/C4CC09074H

[29]. Mackenzie, C. F.; Spackman, P. R.; Jayatilaka, D.; Spackman, M. A. IUCrJ. 2017, 4, 575-587.
https://doi.org/10.1107/S205225251700848X

[30]. Tan, S. L.; Jotani, M. M.; Tiekink, E. R. T. Acta Cryst. E 2019, 75, 308-318.
https://doi.org/10.1107/S2056989019001129

Supporting Agencies

University of Liège, Liège, Belgium
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).