European Journal of Chemistry

Describing auxin solid state intermolecular interactions using contact descriptors, shape property and molecular fingerprint: comparison of pure auxin crystal and auxin-TIR1 co-crystal

Crossmark


Main Article Content

Kodjo Djidjole Etse
Koffi Senam Etse
Marie-Luce Akossiwoa Quashie

Abstract

This work reports for the first time, the analysis of intermolecular interactions in crystal structures of auxin (Indole-3-acetic acid) crystallized as pure sample (Aux-A) or co-crystallized with transport inhibitor response 1 (Aux-B). Using crystal packing of pure auxin and a cluster of residues in a radius of 6 Å around this ligand in the transport inhibitor response 1 binding domain, various properties were calculated and mapped on the Hirshfeld surface (HS). The HSs of the two molecules are characterized by close parameters of volume, area, globularity, and asphericity revealing the efficiency of the considered cluster. The HS mapped over descriptors like de, di and dnorm showed red spots corresponding to hydrogen bonds contacts. In addition to the shape index and curvedness descriptors, the results highlight weak interactions stabilizing the auxin structures. The analyses of electrostatic potential, electron density, and deformation density maps confirm the slightly change in the electron donor and acceptor groups localization. Furthermore, the molecular fingerprint analyses revealed a notable discrepancy in the shape and percentage value of the various contacts. Decomposition of the fingerprint shows that the contributions of important contacts (H···H, H···O, and O···O) are higher in Aux-B than in Aux-A. Finally, the quantitative approach by the determination of the molecular interaction energies of the two structures in their respective crystallographic environment revealed that Aux-A is slightly more stabilized than Aux-B.


icon graph This Abstract was viewed 1004 times | icon graph Article PDF downloaded 305 times

How to Cite
(1)
Etse, K. D.; Etse, K. S.; Quashie, M.-L. A. Describing Auxin Solid State Intermolecular Interactions Using Contact Descriptors, Shape Property and Molecular Fingerprint: Comparison of Pure Auxin Crystal and Auxin-TIR1 Co-Crystal. Eur. J. Chem. 2022, 13, 172-179.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Altpeter, F.; Springer, N. M.; Bartley, L. E.; Blechl, A.; Brutnell, T. P.; Citovsky, V.; Conrad, L.; Gelvin, S. B.; Jackson, D.; Kausch, A. P.; Lemaux, P. G.; Medford, J. I.; Orozo-Cardenas, M.; Tricoli, D.; VanEck, J.; Voytas, D. F.; Walbot, V.; Wang, K.; Zhang, Z. J.; Stewart, C. N., Jr Advancing crop transformation in the era of genome editing. Plant Cell 2016, 28, 1510-1520.
https://doi.org/10.1105/tpc.16.00196

[2]. Wani, S. H.; Kumar, V.; Shriram, V.; Sah, S. K. Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. Crop J. 2016, 4, 162-176.
https://doi.org/10.1016/j.cj.2016.01.010

[3]. Vert, G.; Nemhauser, J. L.; Geldner, N.; Hong, F.; Chory, J. Molecular mechanisms of steroid hormone signaling in plants. Annu. Rev. Cell Dev. Biol. 2005, 21, 177-201.
https://doi.org/10.1146/annurev.cellbio.21.090704.151241

[4]. Browse, J. Jasmonate: An oxylipin signal with many roles in plants. In Plant Hormones; Elsevier, 2005; pp. 431-456.
https://doi.org/10.1016/S0083-6729(05)72012-4

[5]. Gomez-Roldan, V.; Fermas, S.; Brewer, P. B.; Puech-Pagès, V.; Dun, E. A.; Pillot, J.-P.; Letisse, F.; Matusova, R.; Danoun, S.; Portais, J.-C.; Bouwmeester, H.; Bécard, G.; Beveridge, C. A.; Rameau, C.; Rochange, S. F. Strigolactone inhibition of shoot branching. Nature 2008, 455, 189-194.
https://doi.org/10.1038/nature07271

[6]. Umehara, M.; Hanada, A.; Yoshida, S.; Akiyama, K.; Arite, T.; Takeda-Kamiya, N.; Magome, H.; Kamiya, Y.; Shirasu, K.; Yoneyama, K.; Kyozuka, J.; Yamaguchi, S. Inhibition of shoot branching by new terpenoid plant hormones. Nature 2008, 455, 195-200.
https://doi.org/10.1038/nature07272

[7]. Leyser, O. The power of auxin in plants: Figure 1. Plant Physiol. 2010, 154, 501-505.
https://doi.org/10.1104/pp.110.161323

[8]. Vanneste, S.; Friml, J. Auxin: a trigger for change in plant development. Cell 2009, 136, 1005-1016.
https://doi.org/10.1016/j.cell.2009.03.001

[9]. Paque, S.; Weijers, D. Q&A: Auxin: the plant molecule that influences almost anything. BMC Biol. 2016, 14, 67.
https://doi.org/10.1186/s12915-016-0291-0

[10]. Yamada, R.; Murai, K.; Uchida, N.; Takahashi, K.; Iwasaki, R.; Tada, Y.; Kinoshita, T.; Itami, K.; Torii, K. U.; Hagihara, S. A super strong engineered auxin-TIR1 pair. Plant Cell Physiol. 2018, 59, 1538-1544.
https://doi.org/10.1093/pcp/pcy127

[11]. Hayashi, K.-I.; Neve, J.; Hirose, M.; Kuboki, A.; Shimada, Y.; Kepinski, S.; Nozaki, H. Rational design of an auxin antagonist of the SCFTIR1 auxin receptor complex. ACS Chem. Biol. 2012, 7, 590-598.
https://doi.org/10.1021/cb200404c

[12]. Zazimalova, E.; Murphy, A. S.; Yang, H.; Hoyerova, K.; Hosek, P. Auxin transporters--why so many? Cold Spring Harb. Perspect. Biol. 2010, 2, a001552-a001552.
https://doi.org/10.1101/cshperspect.a001552

[13]. Zhao, Y. Auxin biosynthesis and its role in plant development. Annu. Rev. Plant Biol. 2010, 61, 49-64.
https://doi.org/10.1146/annurev-arplant-042809-112308

[14]. Salehin, M.; Bagchi, R.; Estelle, M. SCFTIR1/AFB-based auxin perception: Mechanism and role in plant growth and development. Plant Cell 2015, 27, 9-19.
https://doi.org/10.1105/tpc.114.133744

[15]. Lavy, M.; Estelle, M. Mechanisms of auxin signaling. Development 2016, 143, 3226-3229.
https://doi.org/10.1242/dev.131870

[16]. Tan, X.; Calderon-Villalobos, L. I. A.; Sharon, M.; Zheng, C.; Robinson, C. V.; Estelle, M.; Zheng, N. Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 2007, 446, 640-645.
https://doi.org/10.1038/nature05731

[17]. Karle, I. L.; Britts, K.; Gum, P. Crystal and molecular structure of 3-indolylacetic acid. Acta Crystallogr. 1964, 17, 496-499.
https://doi.org/10.1107/S0365110X64001190

[18]. Chandrasekhar, K.; Raghunathan, S. A reinvestigation of the structure of (3-indolyl)acetic acid. Acta Crystallogr. B 1982, 38, 2534-2535.
https://doi.org/10.1107/S0567740882009303

[19]. Nigović, B.; Antolić, S.; Kojić-Prodić, B.; Kiralj, R.; Magnus, V.; Salopek-Sondi, B. Correlation of structural and physico-chemical parameters with the bioactivity of alkylated derivatives of indole-3-acetic acid, a phytohormone (auxin). Acta Crystallogr. B 2000, 56, 94-111.
https://doi.org/10.1107/S0108768199006199

[20]. Woodward, A. W. Auxin: Regulation, action, and interaction. Ann. Bot. 2005, 95, 707-735.
https://doi.org/10.1093/aob/mci083

[21]. McKinnon, J. J.; Spackman, M. A.; Mitchell, A. S. Novel tools for visualizing and exploring intermolecular interactions in molecular crystals. Acta Crystallogr. B 2004, 60, 627-668.
https://doi.org/10.1107/S0108768104020300

[22]. Ozochukwu, I. S.; Okpareke, O. C.; Izuogu, D. C.; Ibezim, A.; Ujam, O. T.; Asegbeloyin, J. N. N'-(Pyridin-3-ylmethylene)benzenesulfonohydra zide: Crystal structure, DFT, Hirshfeld surface and in silico anticancer studies. Eur. J. Chem. 2021, 12, 256-264.
https://doi.org/10.5155/eurjchem.12.3.256-264.2102

[23]. Spackman, P. R.; Turner, M. J.; McKinnon, J. J.; Wolff, S. K.; Grimwood, D. J.; Jayatilaka, D.; Spackman, M. A. CrystalExplorer: a program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. J. Appl. Crystallogr. 2021, 54, 1006-1011.
https://doi.org/10.1107/S1600576721002910

[24]. Etsè, K. S.; Dorosz, J.; McLain Christensen, K.; Thomas, J.-Y.; Botez Pop, I.; Goffin, E.; Colson, T.; Lestage, P.; Danober, L.; Pirotte, B.; Kastrup, J. S.; Francotte, P. Development of thiochroman dioxide analogues of benzothiadiazine dioxides as new positive allosteric modulators of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. ACS Chem. Neurosci. 2021, 12, 2679-2692.
https://doi.org/10.1021/acschemneuro.1c00255

[25]. DeLano, W. L. The PyMOL Molecular Graphics System, DeLano Scientific, 700, San Carlos, CA, 2002.

[26]. Qi, H. W.; Kulik, H. J. Evaluating unexpectedly short non-covalent distances in X-ray crystal structures of proteins with electronic structure analysis. J. Chem. Inf. Model. 2019, 59, 2199-2211.
https://doi.org/10.1021/acs.jcim.9b00144

[27]. Scheiner, S. Understanding noncovalent bonds and their controlling forces. J. Chem. Phys. 2020, 153, 140901.
https://doi.org/10.1063/5.0026168

[28]. Spackman, P. R.; Yu, L.-J.; Morton, C. J.; Parker, M. W.; Bond, C. S.; Spackman, M. A.; Jayatilaka, D.; Thomas, S. P. Bridging crystal engi-neering and drug discovery by utilizing intermolecular interactions and molecular shapes in crystals. Angew. Chem. Int. Ed Engl. 2019, 58, 16780-16784.
https://doi.org/10.1002/anie.201906602

[29]. Mandal, S. K.; Saha, P.; Munshi, P.; Sukumar, N. Exploring potent ligand for proteins: insights from knowledge-based scoring functions and molecular interaction energies. Struct. Chem. 2017, 28, 1537-1552.
https://doi.org/10.1007/s11224-017-1007-y

[30]. Hunter, C. A.; Singh, J.; Thornton, J. M. Π-π interactions: The geometry and energetics of phenylalanine-phenylalanine interactions in proteins. J. Mol. Biol. 1991, 218, 837-846.
https://doi.org/10.1016/0022-2836(91)90271-7

[31]. Spackman, M. A.; McKinnon, J. J. Fingerprinting intermolecular inte-ractions in molecular crystals. CrystEngComm 2002, 4, 378-392.
https://doi.org/10.1039/B203191B

[32]. Spackman, M. A.; Jayatilaka, D. Hirshfeld surface analysis. CrystEngComm 2009, 11, 19-32.
https://doi.org/10.1039/B818330A

[33]. Etsè, K. S.; Etsè, K. D.; Nyssen, P.; Mouithys-Mickalad, A. Assessment of anti-inflammatory-like, antioxidant activities and molecular docking of three alkynyl-substituted 3-ylidene-dihydrobenzo[d]isothiazole 1,1-dioxide derivatives. Chem. Biol. Interact. 2021, 344, 109513.
https://doi.org/10.1016/j.cbi.2021.109513

[34]. Sénam Etsè, K.; Zaragoza, G.; Boschini, F.; Mahmoud, A. New N-methylimidazolium hexachloroantimonate: Synthesis, crystal structure, Hirshfeld surface and catalytic activity of in cyclopropa-nation of stryrene. Inorg. Chem. Commun. 2020, 122, 108291.
https://doi.org/10.1016/j.inoche.2020.108291

[35]. Etsè, K. S.; Zaragoza, G. Insight into structural description of novel 1,4-Diacetyl-3,6-bis(phenylmethyl)-2,5-piperazinedione: synthesis, NMR, IR, Raman, X-ray, Hirshfeld surface, DFT and docking on breast cancer resistance protein. J. Mol. Struct. 2022, 1248, 131435.
https://doi.org/10.1016/j.molstruc.2021.131435

[36]. Etsè, K. S.; Demonceau, A.; Zaragoza, G.; Serteyn, D.; Mouithys-Mickalad, A. Design, synthesis and biochemical evaluation of novel 2-amino-3-(7-methoxybenzo[d][1,3]dioxol-5-yl)propanoic acid using Horseradish peroxidase (HRP) activity, cellular ROS inhibition and molecular docking study. J. Mol. Struct. 2022, 1250, 131668.
https://doi.org/10.1016/j.molstruc.2021.131668

[37]. Etsè, K. S.; Zaragoza, G.; Etsè, K. D. Easy preparation of novel 3,3-dimethyl-3,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-dioxide: Molecular structure, Hirshfeld surface, NCI analyses and molecular docking on AMPA receptors. J. Mol. Struct. 2021, 1238, 130435.
https://doi.org/10.1016/j.molstruc.2021.130435

[38]. Etse, K. S.; Lamela, L. C.; Zaragoza, G.; Pirotte, B. Synthesis, crystal structure, Hirshfeld surface and interaction energies analysis of 5-methyl-1,3-bis(3-nitrobenzyl)pyrimidine-2,4(1H,3H)-dione. Eur. J. Chem. 2020, 11, 91-99.
https://doi.org/10.5155/eurjchem.11.2.91-99.1973

[39]. McKinnon, J. J.; Jayatilaka, D.; Spackman, M. A. Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces. Chem. Commun. (Camb.) 2007, 3814-3816.
https://doi.org/10.1039/b704980c

[40]. Tan, S. L.; Jotani, M. M.; Tiekink, E. R. T. Utilizing Hirshfeld surface calculations, non-covalent interaction (NCI) plots and the calculation of interaction energies in the analysis of molecular packing. Acta Crystallogr. E Crystallogr. Commun. 2019, 75, 308-318.
https://doi.org/10.1107/S2056989019001129

[41]. Ifeanyieze, K. J.; Ayiya, B. B.; Okpareke, O. C.; Groutso, T. V.; Asegbeloyin, J. N. Crystal structure, Hirshfeld surface and computa-tional study of 1-(9,10-dioxo-9,10-dihydroanthracen-1-yl)-3-propa-noylthiourea. Acta Crystallogr. E Crystallogr. Commun. 2022, 78, 439-444.
https://doi.org/10.1107/S2056989022003127

[42]. Ayiya, B. B.; Okpareke, O. C. N,N′-Di(pyridine-4-yl)-pyridine-3,5-dicarboxamide, a pincer-type tricationic compound; Synthesis, crystal structure, Hirshfeld surface analysis, and computational chemistry studies. J. Chem. Crystallogr. 2021, https://doi.org/10.1007/s10870-021-00902-4.
https://doi.org/10.1007/s10870-021-00902-4

[43]. Turner, M. J.; Thomas, S. P.; Shi, M. W.; Jayatilaka, D.; Spackman, M. A. Energy frameworks: insights into interaction anisotropy and the mechanical properties of molecular crystals. Chem. Commun. (Camb.) 2015, 51, 3735-3738.
https://doi.org/10.1039/C4CC09074H

[44]. Mackenzie, C. F.; Spackman, P. R.; Jayatilaka, D.; Spackman, M. A. CrystalExplorer model energies and energy frameworks: extension to metal coordination compounds, organic salts, solvates and open-shell systems. IUCrJ 2017, 4, 575-587.
https://doi.org/10.1107/S205225251700848X

Supporting Agencies

TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2025 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).