European Journal of Chemistry

Synthesis and characterization of Ti(IV), Zr(IV) and Al(III) salen-based complexes

Crossmark


Main Article Content

Joana Hipolito
Luis Alves
Ana Martins

Abstract

New Ti(IV), Zr(IV) and Al(III) salen-based complexes of formulae [(L)TiCl2], 2, [(L)ZrCl2], 3, and [(L){Al(CH2CH(CH3)2)2}2], 4, where L = meso-(R,S)-diphenylethylene-salen, were synthesized in high yields. [(L){Al(CH2CH(CH3)2)2}2] is a bimetallic complex that results from the reaction of H2L with either 1 or 2 equivalent of Al(CH2CH(CH3)2)3. The solid-state molecular structures of compounds 2 and 4·(C7H8) were obtained by single-crystal X-ray diffraction. Crystal data for C44H54Cl2N2O2Ti, (2a): monoclinic, space group C2/c (no. 15), a = 27.384(1) Å, b = 12.1436(8) Å, c = 28.773(2) Å, β = 112.644(2)°, V = 8830.6(9) Å3, Z = 8, μ(MoKα) = 0.350 mm-1, Dcalc = 1.146 g/cm3, 26647 reflections measured (5.204° ≤ 2Θ ≤ 50.7°), 8072 unique (Rint = 0.0967, Rsigma = 0.1241) which were used in all calculations. The final R1 was 0.0640 (I > 2σ(I)) and wR2 was 0.1907 (all data). Crystal data for C62H72Cl2N2O2Ti (2b): monoclinic, space group P21/c (no. 14), a = 19.606(1) Å, b = 12.793(1) Å, c = 23.189(2) Å, β = 105.710(4)°, V = 5599.0(7) Å3, Z = 4, μ(MoKα) = 0.291 mm-1, Dcalc = 1.182 g/cm3, 37593 reflections measured (3.65° ≤ 2Θ ≤ 50.928°), 10304 unique (Rint = 0.0866, Rsigma = 0.1032) which were used in all calculations. The final R1 was 0.0593 (I > 2σ(I)) and wR2 was 0.1501 (all data). Crystal data for C67H97Al2N2O2 (4·(C7H8)): triclinic, space group P-1 (no. 2), a = 10.0619(9) Å, b = 16.612(2) Å, c = 21.308(2) Å, α = 67.193(5)°, β = 78.157(6)°, γ = 77.576(5)°, V = 3176.8(6) Å3, Z = 2, μ(MoKα) = 0.088 mm-1, Dcalc = 1.063 g/cm3, 42107 reflections measured (5.382° ≤ 2Θ ≤ 51.624°), 12111 unique (Rint = 0.0624, Rsigma = 0.0706) which were used in all calculations. The final R1 was 0.0568 (I > 2σ(I)) and wR2 was 0.1611 (all data). The solid-state molecular structure of [(L){Al(CH2CH(CH3)2)2}2] reveals that both metal centres display a slightly distorted tetrahedral geometry bridged by the salen ligand. Both [(L)TiCl2] and [(L)ZrCl2] complexes display octahedral geometry with trans-chlorido ligands.


icon graph This Abstract was viewed 1091 times | icon graph Article PDF downloaded 558 times icon graph Article CIF FILE downloaded 0 times icon graph Article CIF FILE downloaded 0 times icon graph Article CIF FILE downloaded 0 times

How to Cite
(1)
Hipolito, J.; Alves, L.; Martins, A. Synthesis and Characterization of Ti(IV), Zr(IV) and Al(III) Salen-Based Complexes. Eur. J. Chem. 2021, 12, 216-221.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Pessoa, J. C.; Correia, I. Coord. Chem. Rev. 2019, 388, 227-247.
https://doi.org/10.1016/j.ccr.2019.02.035

[2]. Motevalli, M.; Oduwole, A. D.; Parkin, B. C.; Ramnauth, R.; Sullivan, A. C.; Kaltsoyannis, N. Dalton Trans. 2003, 3591-3598.
https://doi.org/10.1039/b304627c

[3]. Rotsch, D. A.; Reinig, K. M.; Weis, E. M.; Taylor, A. B.; Barnes, C. L.; Jurisson, S. S. Dalton Trans. 2013, 42, 11614-11625.
https://doi.org/10.1039/c3dt51198g

[4]. Xie, J.; Lo, P.-K.; Lam, W. W. Y.; Man, W.-L.; Ma, L.; Yiu, S.-M.; Lau, K.-C.; Lau, T.-C. Chem. Commun. (Camb.) 2016, 52, 11430-11433.
https://doi.org/10.1039/C6CC06231H

[5]. Chiang, L.; Allan, L. E. N.; Alcantara, J.; Wang, M. C. P.; Storr, T.; Shaver, M. P. Dalton Trans. 2014, 43, 4295-4304.
https://doi.org/10.1039/C3DT51846A

[6]. Akbari, A.; Ahmadi, M.; Takjoo, R.; Heinemann, F. W. J. Coord. Chem. 2012, 65, 4115-4124.
https://doi.org/10.1080/00958972.2012.733379

[7]. Dyers, L., Jr; Que, S. Y.; VanDerveer, D.; Bu, X. R. Inorg. Chim. Acta 2006, 359, 197-203.
https://doi.org/10.1016/j.ica.2005.06.068

[8]. Mirkhani, V.; Moghadam, M.; Tangestaninejad, S.; Bahramian, B. J. Iran. Chem. Soc. 2008, 5, 375-383.
https://doi.org/10.1007/BF03245991

[9]. Lee, C. L.; Chen, D.; Chang, X.-Y.; Tang, Z.; Che, C.-M. Organometallics 2020, 39, 2642-2652.
https://doi.org/10.1021/acs.organomet.0c00268

[10]. Shaw, S.; White, J. D. Chem. Rev. 2019, 119, 9381-9426.
https://doi.org/10.1021/acs.chemrev.9b00074

[11]. Hutson, G. E.; Türkmen, Y. E.; Rawal, V. H. J. Am. Chem. Soc. 2013, 135, 4988-4991.
https://doi.org/10.1021/ja401908m

[12]. White, J. D.; Shaw, S. Org. Lett. 2011, 13, 2488-2491.
https://doi.org/10.1021/ol2007378

[13]. Egami, H.; Irie, R.; Sakai, K.; Katsuki, T. Chem. Lett. 2007, 36, 46-47.
https://doi.org/10.1246/cl.2007.46

[14]. McGarrigle, E. M.; Gilheany, D. G. Chem. Rev. 2005, 105, 1563-1602.
https://doi.org/10.1021/cr0306945

[15]. Xu, Z.-J.; Fang, R.; Zhao, C.; Huang, J.-S.; Li, G.-Y.; Zhu, N.; Che, C.-M. J. Am. Chem. Soc. 2009, 131, 4405-4417.
https://doi.org/10.1021/ja8086399

[16]. Tai, S.; Maskrey, T. S.; Nyalapatla, P. R.; Wipf, P. Chirality 2019, 31, 1014-1027.
https://doi.org/10.1002/chir.23144

[17]. White, J. D.; Shaw, S. Org. Lett. 2014, 16, 3880-3883.
https://doi.org/10.1021/ol501549x

[18]. Man, W.-L.; Lam, W. W. Y.; Yiu, S.-M.; Lau, T.-C.; Peng, S.-M. J. Am. Chem. Soc. 2004, 126, 15336-15337.
https://doi.org/10.1021/ja045845f

[19]. Kawabata, H.; Omura, K.; Katsuki, T. Tetrahedron Lett. 2006, 47, 1571-1574.
https://doi.org/10.1016/j.tetlet.2005.12.124

[20]. Sun, W.; Herdtweck, E.; Kühn, F. E. New J Chem 2005, 29, 1577-1580.
https://doi.org/10.1039/b509568a

[21]. Kim, S. S.; Rajagopal, G. Synthesis (Mass.) 2003, 2461-2463.
https://doi.org/10.1055/s-2003-42419

[22]. Bismuto, A.; Cucciolito, M. E.; Ruffo, F.; Vitagliano, A.; Curcio, M. Phosphorus Sulfur Silicon Relat. Elem. 2015, 190, 1021-1028.
https://doi.org/10.1080/10426507.2014.952005

[23]. Katsuki, T.; Miyazaki, T. Synlett 2003, 1046-1048.
https://doi.org/10.1055/s-2003-39321

[24]. Yang, Z.; Hu, C.; Duan, R.; Sun, Z.; Zhang, H.; Pang, X.; Li, L. Asian J. Org. Chem. 2019, 8, 376-384.
https://doi.org/10.1002/ajoc.201800695

[25]. Duan, R.; Hu, C.; Li, X.; Pang, X.; Sun, Z.; Chen, X.; Wang, X. Macromolecules 2017, 50, 9188-9195.
https://doi.org/10.1021/acs.macromol.7b01766

[26]. Chen, H.-L.; Dutta, S.; Huang, P.-Y.; Lin, C.-C. Organometallics 2012, 31, 2016-2025.
https://doi.org/10.1021/om201281w

[27]. Cui, Y.; Li, D.; Gao, B.; Zhou, Y.; Chen, L.; Qiu, B.; Li, Y.; Duan, Q.; Hu, N. J. Coord. Chem. 2016, 69, 656-667.
https://doi.org/10.1080/00958972.2015.1121248

[28]. Gaston, A. J.; Navickaite, G.; Nichol, G. S.; Shaver, M. P.; Garden, J. A. Eur. Polym. J. 2019, 119, 507-513.
https://doi.org/10.1016/j.eurpolymj.2019.07.017

[29]. Yu, Y.; Yuan, D.; Wang, Y.; Yao, Y. J. Organomet. Chem. 2016, 819, 37-45.
https://doi.org/10.1016/j.jorganchem.2016.06.020

[30]. Darensbourg, D. J. Chem. Rev. 2007, 107, 2388-2410.
https://doi.org/10.1021/cr068363q

[31]. Decortes, A.; Haak, R. M.; Martín, C.; Belmonte, M. M.; Martin, E.; Benet-Buchholz, J.; Kleij, A. W. Macromolecules 2015, 48, 8197-8207.
https://doi.org/10.1021/acs.macromol.5b01880

[32]. Ambrose, K.; Murphy, J. N.; Kozak, C. M. Inorg. Chem. 2020, 59, 15375-15383.
https://doi.org/10.1021/acs.inorgchem.0c02348

[33]. Davis, A.; Kilner, C. A.; Kee, T. P. Inorg. Chim. Acta 2004, 357, 3493-3502.
https://doi.org/10.1016/j.ica.2004.01.048

[34]. Kim, I.; Ha, Y. S.; Zhang, D. F.; Ha, C.-S.; Lee, U. Macromol. Rapid Commun. 2004, 25, 1319-1323.
https://doi.org/10.1002/marc.200400137

[35]. Gurung, R. K.; McMillen, C. D.; Jarrett, W. L.; Holder, A. A. Inorg. Chim. Acta 2020, 505, 119496.
https://doi.org/10.1016/j.ica.2020.119496

[36]. Gu, W.; Xu, P.; Wang, Y.; Yao, Y.; Yuan, D.; Shen, Q. Organometallics 2015, 34, 2907-2916.
https://doi.org/10.1021/acs.organomet.5b00223

[37]. Saha, T. K.; Ramkumar, V.; Chakraborty, D. Inorg. Chem. 2011, 50, 2720-2722.
https://doi.org/10.1021/ic1025262

[38]. Taheri, O.; Behzad, M.; Ghaffari, A.; Kubicki, M.; Dutkiewicz, G.; Bezaatpour, A.; Nazari, H.; Khaleghian, A.; Mohammadi, A.; Salehi, M. Transit. Met. Chem. 2014, 39, 253-259.
https://doi.org/10.1007/s11243-014-9798-9

[39]. Balakrishnan, C.; Neelakantan, M. A. Inorg. Chim. Acta 2018, 469, 503-514.
https://doi.org/10.1016/j.ica.2017.09.060

[40]. Ghaffari, A.; Behzad, M.; Dutkiewicz, G.; Kubicki, M.; Salehi, M. J. Coord. Chem. 2012, 65, 840-855.
https://doi.org/10.1080/00958972.2012.662275

[41]. Białek, M.; Leksza, A.; Piechota, A.; Kurzak, K.; Koprek, K. J. Polym. Res. 2014, 21, 389.
https://doi.org/10.1007/s10965-014-0389-4

[42]. Van Aelstyn, M. A.; Keizer, T. S.; Klopotek, D. L.; Liu, S.; Munoz-Hernandez, M.-A.; Wei, P.; Atwood, D. A. Organometallics 2000, 19, 1796-1801.
https://doi.org/10.1021/om990829q

[43]. Clegg, W.; Harrington, R. W.; North, M.; Villuendas, P. J. Org. Chem. 2010, 75, 6201-6207.
https://doi.org/10.1021/jo101121h

[44]. Alaaeddine, A.; Roisnel, T.; Thomas, C. M.; Carpentier, J.-F. Adv. Synth. Catal. 2008, 350, 731-740.
https://doi.org/10.1002/adsc.200700565

[45]. Maru, M. S.; Barroso, S.; Adão, P.; Alves, L. G.; Martins, A. M. J. Organomet. Chem. 2018, 870, 136-144.
https://doi.org/10.1016/j.jorganchem.2018.06.011

[46]. SAINT. Bruker AXS Inc. Madison. Wisconsin, USA, 1997-2003.

[47]. SADABS. Bruker AXS Inc. Madison. Wisconsin, USA, 1997-2003.

[48]. Altomare, A.; Burla, M. C.; Camalli, M.; Cascarano, G. L.; Giacovazzo, C.; Guagliardi, A.; Moliterni, A. G. G.; Polidori, G.; Spagna, R. J. Appl. Crystallogr. 1999, 32, 115-119.
https://doi.org/10.1107/S0021889898007717

[49]. Burla, M. C.; Caliandro, R.; Camalli, M.; Carrozzini, B.; Cascarano, G. L.; De Caro, L.; Giacovazzo, C.; Polidori, G.; Spagna, R. J. Appl. Crystallogr. 2005, 38, 381-388.
https://doi.org/10.1107/S002188980403225X

[50]. Sheldrick, G. M. Acta Crystallogr. C Struct. Chem. 2015, 71, 3-8.
https://doi.org/10.1107/S2053229614024218

[51]. Farrugia, L. J. J. Appl. Crystallogr. 1999, 32, 837-838.
https://doi.org/10.1107/S0021889899006020

[52]. Spek, A. L. Acta Crystallogr. D Biol. Crystallogr. 2009, 65, 148-155.
https://doi.org/10.1107/S090744490804362X

[53]. Farrugia, L. J. J. Appl. Crystallogr. 1997, 30, 565-565.
https://doi.org/10.1107/S0021889897003117

[54]. Boyd, C. L.; Toupance, T.; Tyrrell, B. R.; Ward, B. D.; Wilson, C. R.; Cowley, A. R.; Mountford, P. Organometallics 2005, 24, 309-330.
https://doi.org/10.1021/om0493661

[55]. Repo, T.; Klinga, M.; Leskelä, M.; Pietikäinen, P.; Brunow, G. Acta Crystallogr. C 1996, 52, 2742-2745.
https://doi.org/10.1107/S010827019600933X

Supporting Agencies

Fundação para a Ciência e a Tecnologia (UID/QUI/00100/2019 and CATSUS PD/BD/114399/2016), Portugal.
Most read articles by the same author(s)
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).