European Journal of Chemistry

Crystallographic and Hirshfeld surface analysis of 10-(4-chlorophenyldiazenyl)-3-(3-chlorophenyl)-1-methyl-3,5a,6,11b-tetrahydro-5H-benzopyrano[4',3'-4,5]pyrano[2,3-c]pyrazole

Crossmark


Main Article Content

Vivek Kumar Gupta
Naresh Sharma
Archna Sharma
Shashikant Bhikhubhai Teraiya
Narsidas Jeramdas Parmar
Deepak Sharma

Abstract

The title compound, 10-(4-chlorophenyldiazenyl)-3-(3-chlorophenyl)-1-methyl-3,5a,6,11b-tetrahydro-5H-benzopyrano [4',3'-4,5]pyrano[2,3-c]pyrazole, crystallizes in the triclinic crystal system having the space group P-1 with the following unit cell parameters: a = 7.599(2), b = 11.596(3), c = 12.796(3) Å, α = 90.092(5), β = 94.810(5), γ = 90.583(5)°, Z = 2. The crystal structure was solved by direct methods using single-crystal X-ray diffraction data collected at 100 K and refined by full-matrix least-squares procedures to a final R-value of 0.0636 for 2578 observed reflections. All three phenyl rings A, B, and F are planar. The pyrazole ring E is also planar. Rings C and D are in half-chair conformation with asymmetry parameters: ΔC2(C7a-C11a) = 3.02 and ΔC2(C3a-C11c) = 4.02, respectively. Hirshfeld surface is a 3D boundary around a molecule/crystal structure based on electron density. The Hirshfeld surface analysis revealed dominant H···H (31.0%), H···Cl (26%), and H···C (18%) interactions, contributing to crystal stability and packing efficiency. Molecular docking studies further indicated a strong and stable ligand-enzyme interaction, highlighting its potential for small-molecule inhibitor development.


icon graph This Abstract was viewed 68 times | icon graph Article PDF downloaded 31 times icon graph Article CIF FILE downloaded 0 times

How to Cite
(1)
Gupta, V. K.; Sharma, N.; Sharma, A.; Teraiya, S. B.; Parmar, N. J.; Sharma, D. Crystallographic and Hirshfeld Surface Analysis of 10-(4-Chlorophenyldiazenyl)-3-(3-Chlorophenyl)-1-Methyl-3,5a,6,11b-Tetrahydro-5H-benzopyrano[4’,3’-4,5]pyrano[2,3-c]pyrazole. Eur. J. Chem. 2025, 16, 311-318.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Nicolaou, K. C.; Snyder, S. A.; Montagnon, T.; Vassilikogiannakis, G. The Diels--Alder Reaction in Total Synthesis. Angew. Chem. Int. Ed Engl. 2002, 41 (10), 1668-1698.
https://doi.org/10.1002/1521-3773(20020517)41:10<1668::AID-ANIE1668>3.0.CO;2-Z

[2]. Matiychuk, V. S.; Lesyk, R. B.; Obushak, M. D.; Gzella, A.; Atamanyuk, D. V.; Ostapiuk, Y. V.; Kryshchyshyn, A. P. A new domino-Knoevenagel-hetero-Diels-Alder reaction. Tetrahedron Lett. 2008, 49 (31), 4648-4651.
https://doi.org/10.1016/j.tetlet.2008.05.062

[3]. Bryhas, A. O.; Horak, Y. I.; Ostapiuk, Y. V.; Obushak, M. D.; Matiychuk, V. S. A New Three-Step Domino Knoevenagel-Hetero-Diels-Alder Oxidation Reaction. Tetrahedron Lett. 2011, 52 (18), 2324-2326.
https://doi.org/10.1016/j.tetlet.2011.02.081

[4]. Tietze, L. F. Domino Reactions in Organic Synthesis. Chem. Rev. 1996, 96 (1), 115-136.
https://doi.org/10.1021/cr950027e

[5]. Tietze, L. F.; Beifuss, U. Sequential Transformations in Organic Chemistry: A Synthetic Strategy with a Future. Angew. Chem. Int. Ed. Engl. 1993, 32 (2), 131-163.
https://doi.org/10.1002/anie.199301313

[6]. Zhang, Z.; Zhang, Q.; Sun, S.; Xiong, T.; Liu, Q. Domino Ring‐Opening/Recyclization Reactions of Doubly Activated Cyclopropanes as a Strategy for the Synthesis of Furoquinoline Derivatives. Angew. Chem. Int. Ed. 2007, 46 (10), 1726-1729.
https://doi.org/10.1002/anie.200604276

[7]. Yadav, A. K.; Peruncheralathan, S.; Ila, H.; Junjappa, H. Domino Carbocationic Rearrangement of α-[Bis(methylthio)methylene]alkyl-2-(3/2-indolyl) Cyclopropyl Ketones. J. Org. Chem. 2007, 72 (4), 1388-1394.
https://doi.org/10.1021/jo062302a

[8]. Pellissier, H. Asymmetric domino reactions. Part B: Reactions based on the use of chiral catalysts and biocatalysts. Tetrahedron 2006, 62 (10), 2143-2173.
https://doi.org/10.1016/j.tet.2005.10.041

[9]. Ceulemans, E.; Voets, M.; Emmers, S.; Uytterhoeven, K.; Van Meervelt, L.; Dehaen, W. Diastereoselective Intramolecular Hetero Diels-Alder Approach towards Polycyclic Heterocycles. Tetrahedron 2002, 58 (3), 531-544.
https://doi.org/10.1016/S0040-4020(01)01153-X

[10]. Dat, N. T.; Lee, J.; Lee, K.; Hong, Y.; Kim, Y. H.; Lee, J. J. Phenolic Constituents of Amorpha fruticosa That Inhibit NF-κB Activation and Related Gene Expression. J. Nat. Prod. 2008, 71 (10), 1696-1700.
https://doi.org/10.1021/np800383q

[11]. Snider, B. B.; Lu, Q. Total Synthesis of (.+-.)-Pyridoxatin. J. Org. Chem. 1994, 59 (26), 8065-8070.
https://doi.org/10.1021/jo00105a024

[12]. Majumdar, K.; Taher, A.; Ray, K. Domino-Knoevenagel-hetero-Diels-Alder reactions: an efficient one-step synthesis of indole-annulated thiopyranobenzopyran derivatives. Tetrahedron Lett. 2009, 50 (27), 3889-3891.
https://doi.org/10.1016/j.tetlet.2009.04.054

[13]. Lee, Y. R.; Kim, Y. M.; Kim, S. H. Efficient one-pot synthesis of benzopyranobenzopyrans and naphthopyranobenzopyrans by domino aldol-type reaction/hetero Diels-Alder reaction of resorcinols and naphthols. Tetrahedron 2009, 65 (1), 101-108.
https://doi.org/10.1016/j.tet.2008.10.101

[14]. El-Tamany, E. S.; El-Shahed, F. A.; Mohamed, B. H. Synthesis and biological activity of some pyrazole derivatives. J. Serbian Chem. Soc. 1999, 64 (1), 9-19.

[15]. Ismail, Z. H.; Aly, G. M.; El-Degwi, M. S.; Heiba, H. I.; Ghorab, M. M. Synthesis and insecticidal activity of some new pyranopyrazoles, pyrazolopyranopyrimidines, and pyrazolopyranopyridines. Egypt. J. Biotechnol. 2003, 13, 73-82.

[16]. Zaki, M. E.; Soliman, H. A.; Hiekal, O. A.; Rashad, A. E. Pyrazolopyranopyrimidines as a Class of Anti-Inflammatory Agents. Zeitschrift Naturforschung. C 2006, 61 (1-2), 1-5.
https://doi.org/10.1515/znc-2006-1-201

[17]. Abdelrazek, F. M.; Metz, P.; Kataeva, O.; Jäger, A.; El-Mahrouky, S. F. Synthesis and Molluscicidal Activity of New Chromene and Pyrano[2,3-c]Pyrazole Derivatives. Arch. Pharm. (Weinheim) 2007, 340 (10), 543-548.
https://doi.org/10.1002/ardp.200700157

[18]. Photochromism: Molecules and Systems, 2nd ed.; Durr, H., Bouas-Laurent, H., Eds.; Elsevier Science: London, England, 2003.

[19]. Organic Photochromic and Thermochromic Compounds: Main Photochromic Families, 1999th ed.; Crano, J. C., Guglielmetti, R. J., Eds.; Kluwer Academic/Plenum: New York, NY, 1999.

[20]. Mannhold, R.; Cruciani, G.; Weber, H.; Lemoine, H.; Derix, A.; Weichel, C.; Clementi, M. 6-Substituted Benzopyrans as Potassium Channel Activators: Synthesis, Vasodilator Properties, and Multivariate Analysis. J. Med. Chem. 1999, 42 (6), 981-991.
https://doi.org/10.1021/jm981047m

[21]. Brown, C. W.; Liu, S.; Klucik, J.; Berlin, K. D.; Brennan, P. J.; Kaur, D.; Benbrook, D. M. Novel Heteroarotinoids as Potential Antagonists of Mycobacteriumbovis BCG. J. Med. Chem. 2004, 47 (4), 1008-1017.
https://doi.org/10.1021/jm0303453

[22]. Parmar, N. J.; Teraiya, S. B.; Patel, R. A.; Talpada, N. P. Tetrabutylammonium Hydrogen Sulfate Mediated Domino Reaction: Synthesis of Novel Benzopyran-Annulated Pyrano[2,3-c]Pyrazoles. Tetrahedron Lett. 2011, 52 (22), 2853-2856.
https://doi.org/10.1016/j.tetlet.2011.03.108

[23]. Conti, C.; Desideri, N. New 4H-Chromen-4-One and 2H-Chromene Derivatives as Anti-Picornavirus Capsid-Binders. Bioorg. Med. Chem. 2010, 18 (17), 6480-6488.
https://doi.org/10.1016/j.bmc.2010.06.103

[24]. Parmar, N. J.; Teraiya, S. B.; Patel, R. A.; Talpada, N. P. Tetrabutylammonium Hydrogen Sulfate Mediated Domino Reaction: Synthesis of Novel Benzopyran-Annulated Pyrano[2,3-c]Pyrazoles. Tetrahedron Lett. 2011, 52 (22), 2853-2856.
https://doi.org/10.1016/j.tetlet.2011.03.108

[25]. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta. Crystallogr. C. Struct. Chem. 2015, 71 (1), 3-8.
https://doi.org/10.1107/S2053229614024218

[26]. Spackman, P. R.; Turner, M. J.; McKinnon, J. J.; Wolff, S. K.; Grimwood, D. J.; Jayatilaka, D.; Spackman, M. A. CrystalExplorer: a program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. J. Appl. Crystallogr. 2021, 54, 1006-1011.
https://doi.org/10.1107/S1600576721002910

[27]. Ritchie, D. W.; Kemp, G. J. Protein Docking Using Spherical Polar Fourier Correlations. Proteins 2000, 39 (2), 178-194.
https://doi.org/10.1002/(SICI)1097-0134(20000501)39:2<178::AID-PROT8>3.0.CO;2-6

[28]. Dennington, R.; Keith, T. A.; Millam, J. M. GaussView, Version 6, Semichem Inc.; Shawnee Mission, KS, 2016.

[29]. Morris, G. M.; Huey, R.; Lindstrom, W.; Sanner, M. F.; Belew, R. K.; Goodsell, D. S.; Olson, A. J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30 (16), 2785-2791.
https://doi.org/10.1002/jcc.21256

[30]. Pettersen, E. F.; Goddard, T. D.; Huang, C. C.; Couch, G. S.; Greenblatt, D. M.; Meng, E. C.; Ferrin, T. E. UCSF Chimera-A visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25 (13), 1605-1612.
https://doi.org/10.1002/jcc.20084

[31]. BIOVIA, Dassault Systemes. Discovery Studio Visualizer, v20.1.0.19295; Dassault Systemes: San Diego, 2020.

[32]. Schrödinger, LLC. The PyMOL Molecular Graphics System, Version 2.0; Schrödinger, LLC: New York, 2015.

[33]. Allen, F. H.; Kennard, O.; Watson, D. G.; Brammer, L.; Orpen, A. G.; Taylor, R. Tables of bond lengths determined by X-ray and neutron diffraction. Part 1. Bond lengths in organic compounds. J. Chem. Soc., Perkin. Trans. 2 1987, S1.
https://doi.org/10.1039/p298700000s1

[34]. Spek, A. L. Structure validation in chemical crystallography. Acta. Crystallogr. D. Biol. Crystallogr. 2009, 65 (2), 148-155.
https://doi.org/10.1107/S090744490804362X

[35]. McKinnon, J. J.; Jayatilaka, D.; Spackman, M. A. Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces. Chem. Commun. 2007, 3814.
https://doi.org/10.1039/b704980c

[36]. Matsuno, T.; Sato, S.; Isobe, H. Curved π-Receptors. Comprehensive Supramolecular Chemistry II 2017, 311-328.
https://doi.org/10.1016/B978-0-12-409547-2.12518-1

[37]. Harchani, A.; Haddad, A. Application of Hirshfeld surfaces, semiempirical calculations and molecular dynamics analysis to study the intermolecular interactions, reactivity and dynamics of two polyoxometalate compounds. Theor. Chem. Acc. 2018, 137 (7), https://doi.org/10.1007/s00214-018-2279-z.
https://doi.org/10.1007/s00214-018-2279-z

[38]. Ortiz de Montellano, P. R.; Wilks, A. Heme Oxygenase Structure and Mechanism. In Advances in Inorganic Chemistry; Elsevier, 2000; pp 359-407.
https://doi.org/10.1016/S0898-8838(00)51007-1

[39]. Skaar, E. P. The Battle for Iron between Bacterial Pathogens and Their Vertebrate Hosts. PLoS. Pathog. 2010, 6 (8), e1000949.
https://doi.org/10.1371/journal.ppat.1000949

[40]. Létoffé, S.; Heuck, G.; Delepelaire, P.; Lange, N.; Wandersman, C. Bacteria Capture Iron from Heme by Keeping Tetrapyrrol Skeleton Intact. Proc. Natl. Acad. Sci. U. S. A. 2009, 106 (28), 11719-11724.
https://doi.org/10.1073/pnas.0903842106

[41]. Lansky, I. B.; Lukat-Rodgers, G. S.; Block, D.; Rodgers, K. R.; Ratliff, M.; Wilks, A. The Cytoplasmic Heme-Binding Protein (PhuS) from the Heme Uptake System of Pseudomonas Aeruginosa Is an Intracellular Heme-Trafficking Protein to the Delta-Regioselective Heme Oxygenase. J. Biol. Chem. 2006, 281 (19), 13652-13662.
https://doi.org/10.1074/jbc.M600824200

[42]. Ritchie, D. W.; Venkatraman, V. Ultra-fast FFT protein docking on graphics processors. Bioinformatics 2010, 26 (19), 2398-2405.
https://doi.org/10.1093/bioinformatics/btq444

[43]. Wilcken, R.; Zimmermann, M. O.; Lange, A.; Joerger, A. C.; Boeckler, F. M. Principles and Applications of Halogen Bonding in Medicinal Chemistry and Chemical Biology. J. Med. Chem. 2013, 56 (4), 1363-1388.
https://doi.org/10.1021/jm3012068

[44]. McGaughey, G. B.; Gagné, M.; Rappé, A. K. π-Stacking Interactions. Journal of Biological Chemistry 1998, 273 (25), 15458-15463.
https://doi.org/10.1074/jbc.273.25.15458

[45]. Hollingsworth, S. A.; Dror, R. O. Molecular Dynamics Simulation for All. Neuron 2018, 99 (6), 1129-1143.
https://doi.org/10.1016/j.neuron.2018.08.011

[46]. Durrant, J. D.; McCammon, J. A. Molecular dynamics simulations and drug discovery. BMC. Biol. 2011, 9 (1), https://doi.org/10.1186/1741-7007-9-71.
https://doi.org/10.1186/1741-7007-9-71

Supporting Agencies

University of Jammu, Jammu, India, The Department of Science and Technology, New Delhi, (SR/WOS-A/PM-3/2018).
Most read articles by the same author(s)

Most read articles by the same author(s)

TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

License Terms

by-nc

Copyright © 2025 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).