European Journal of Chemistry

Effect of calcination temperature on the structure and morphology of zinc oxide nanoparticles synthesized by base-catalyzed aqueous sol-gel process

Crossmark


Main Article Content

Samreen Zahra
Saboora Qaisa
Asma Sheikh
Hamim Bukhari
Chaudhry Athar Amin

Abstract

This study reports the base-catalyzed aqueous sol-gel synthesis of zinc oxide nanoparticles. The solution was primarily comprised of zinc nitrate hexahydrate as a metal precursor, isopropyl alcohol and water as solvents, and glycerin as a stabilizing agent. The effect of calcination temperature on the structure and morphology of the prepared nanoparticles was investigated by varying the calcination temperature from 500 to 900 °C. The X-ray diffraction analysis, infrared spectroscopy, thermogravimetric analysis, and field emission scanning electron microscopy were employed to determine the crystal structure, surface functional groups, thermal stability, and surface morphology of the nanoparticles. The particle size was found to be directly proportional to the calcination temperature.


icon graph This Abstract was viewed 2200 times | icon graph Article PDF downloaded 375 times

How to Cite
(1)
Zahra, S.; Qaisa, S.; Sheikh, A.; Bukhari, H.; Amin, C. A. Effect of Calcination Temperature on the Structure and Morphology of Zinc Oxide Nanoparticles Synthesized by Base-Catalyzed Aqueous Sol-Gel Process. Eur. J. Chem. 2022, 13, 162-167.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Kołodziejczak-Radzimska, A.; Jesionowski, T. Zinc oxide-from synthesis to application: A review. Materials (Basel) 2014, 7, 2833-2881.
https://doi.org/10.3390/ma7042833

[2]. Shaba, E. Y.; Jacob, J. O.; Tijani, J. O.; Suleiman, M. A. T. A critical review of synthesis parameters affecting the properties of zinc oxide nanoparticle and its application in wastewater treatment. Appl. Water Sci. 2021, 11, 48-89.
https://doi.org/10.1007/s13201-021-01370-z

[3]. Naveed Ul Haq, A.; Nadhman, A.; Ullah, I.; Mustafa, G.; Yasinzai, M.; Khan, I. Synthesis approaches of zinc oxide nanoparticles: The dilemma of ecotoxicity. J. Nanomater. 2017, 2017, 1-14.
https://doi.org/10.1155/2017/8510342

[4]. Fardood, S. T.; Ramazani, A.; Moradnia, F.; Afshari, Z.; Ganjkhanlu, S.; Zare, F. Y. Green synthesis of ZnO nanoparticles via sol-gel method and investigation of its application in solvent-free synthesis of 12-aryl-tetrahydrobenzo[α]xanthene-11-one derivatives under microwave irradiation. Chem. Methodol. 2019, 3, 696-706.
https://doi.org/10.33945/SAMI/CHEMM.2019.6.2

[5]. Davis, K.; Yarbrough, R.; Froeschle, M.; White, J.; Rathnayake, H. Band gap engineered zinc oxide nanostructures via a sol-gel synthesis of solvent driven shape-controlled crystal growth. RSC Adv. 2019, 9, 14638-14648.
https://doi.org/10.1039/C9RA02091H

[6]. Verma, H. K.; Maurya, K. K. Synthesized zinc oxide nanomaterials studies of structural, optical and photocatalytic applications. AIP Conference Proceedings 2020, 2220, 140032.
https://doi.org/10.1063/5.0001275

[7]. Konne, J. L.; Christopher, B. O. Sol-gel syntheses of zinc oxide and hydrogenated zinc oxide (ZnO:H) phases. J. Nanotechnol. 2017, 2017, 1-8.
https://doi.org/10.1155/2017/5219850

[8]. Arya, S.; Mahajan, P.; Mahajan, S.; Khosla, A.; Datt, R.; Gupta, V.; Young, S.-J.; Oruganti, S. K. Review-influence of processing parameters to control morphology and optical properties of sol-gel synthesized ZnO nanoparticles. ECS J. Solid State Sci. Technol. 2021, 10, 023002-023023.
https://doi.org/10.1149/2162-8777/abe095

[9]. Lu, X.; Kanamori, K.; Nakanishi, K. Preparation of zinc oxide with a three-dimensionally interconnected macroporous structure via a sol-gel method accompanied by phase separation. New J Chem 2019, 43, 11720-11726.
https://doi.org/10.1039/C9NJ02373A

[10]. Vishwakarma, A. Synthesis of zinc oxide nanoparticle by sol-gel method and study its characterization. Int. J. Res. Appl. Sci. Eng. Technol. 2020, 8, 1625-1627.
https://doi.org/10.22214/ijraset.2020.4265

[11]. Somoghi, R.; Purcar, V.; Alexandrescu, E.; Gifu, I. C.; Ninciuleanu, C. M.; Cotrut, C. M.; Oancea, F.; Stroescu, H. Synthesis of zinc oxide nanomaterials via sol-gel process with anti-corrosive effect for Cu, Al and Zn metallic substrates. Coatings 2021, 11, 444-458.
https://doi.org/10.3390/coatings11040444

[12]. Fakhari, S.; Jamzad, M.; Kabiri Fard, H. Green synthesis of zinc oxide nanoparticles: a comparison. Green Chem. Lett. Rev. 2019, 12, 19-24.
https://doi.org/10.1080/17518253.2018.1547925

[13]. Hasnidawani, J. N.; Azlina, H. N.; Norita, H.; Bonnia, N. N.; Ratim, S.; Ali, E. S. Synthesis of ZnO nanostructures using sol-gel method. Procedia Chem. 2016, 19, 211-216.
https://doi.org/10.1016/j.proche.2016.03.095

[14]. Mehar, S.; Khoso, S.; Qin, W.; Anam, I.; Iqbal, A.; Iqbal, K. Green Synthesis of Zincoxide Nanoparticles from Peganum harmala, and its biological potential against bacteria. Front. nanosci. nanotechnol. 2019, 6, 1-5.
https://doi.org/10.15761/FNN.1000188

[15]. Narayana, A.; Bhat, S. A.; Fathima, A.; Lokesh, S. V.; Surya, S. G.; Yelamaggad, C. V. Green and low-cost synthesis of zinc oxide nano particles and their application in transistor-based carbon monoxide sensing. RSC Adv. 2020, 10, 13532-13542.
https://doi.org/10.1039/D0RA00478B

[16]. Thi Tran, Q. M.; Thi Nguyen, H. A.; Doan, V.-D.; Tran, Q.-H.; Nguyen, V. C. Biosynthesis of zinc oxide nanoparticles using aqueous Piper betle leaf extract and its application in surgical sutures. J. Nanomater. 2021, 2021, 1-15.
https://doi.org/10.1155/2021/8833864

[17]. Singh, N.; Haque, F. Z. Synthesis of zinc oxide nanoparticles with different pH by aqueous solution growth technique. Optik (Stuttg.) 2016, 127, 174-177.
https://doi.org/10.1016/j.ijleo.2015.09.024

[18]. Alamdari, S.; Sasani Ghamsari, M.; Lee, C.; Han, W.; Park, H.-H.; Tafreshi, M. J.; Afarideh, H.; Ara, M. H. M. Preparation and characterization of zinc oxide nanoparticles using leaf extract of Sambucus ebulus. Appl. Sci. (Basel) 2020, 10, 3620-3638.
https://doi.org/10.3390/app10103620

[19]. Bagabas, A.; Alshammari, A.; Aboud, M. F.; Kosslick, H. Room-temperature synthesis of zinc oxide nanoparticles in different media and their application in cyanide photodegradation. Nanoscale Res. Lett. 2013, 8, 516-525.
https://doi.org/10.1186/1556-276X-8-516

[20]. Mei, L. F.; Liang, K. M. Crystallization behavior of Mg-doped Titania. Key Eng. Mater. 2010, 434-435, 847-849.
https://doi.org/10.4028/www.scientific.net/KEM.434-435.847

[21]. Šćepanović, M.; Abramović, B.; Golubović, A.; Kler, S.; Grujić-Brojčin, M.; Dohčević-Mitrović, Z.; Babić, B.; Matović, B.; Popović, Z. V. Photocatalytic degradation of metoprolol in water suspension of TiO2 nanopowders prepared using sol-gel route. J. Solgel Sci. Technol. 2012, 61, 390-402.
https://doi.org/10.1007/s10971-011-2639-9

[22]. Sharma, G.; Soni, R.; Jasuja, N. D. Phytoassisted synthesis of magne-sium oxide nanoparticles with Swertia chirayaita. J. Taibah Univ. SCI 2017, 11, 471-477.
https://doi.org/10.1016/j.jtusci.2016.09.004

[23]. Lopez-Iscoa, P.; Pugliese, D.; Boetti, N.; Janner, D.; Baldi, G.; Petit, L.; Milanese, D. Design, synthesis, and structure-property relationships of Er3+-doped TiO2 luminescent particles synthesized by sol-gel. Nanomaterials (Basel) 2018, 8, 20-33.
https://doi.org/10.3390/nano8010020

[24]. Ramimoghadam, D.; Bagheri, S.; Abd Hamid, S. B. Biotemplated synthesis of anatase titanium dioxide nanoparticles via lignocellulosic waste material. Biomed Res. Int. 2014, 2014, 205636.
https://doi.org/10.1155/2014/205636

[25]. Wong, M.-S.; Chen, C.-W.; Hsieh, C.-C.; Hung, S.-C.; Sun, D.-S.; Chang, H.-H. Antibacterial property of Ag nanoparticle-impregnated N-doped titania films under visible light. Sci. Rep. 2015, 5, 11978-11988.
https://doi.org/10.1038/srep11978

[26]. Meshesha, D. S.; Matangi, R. C.; Tirukkovalluri, S. R.; Bojja, S. Synthesis and characterization of Ba 2+ and Zr 4+ co-doped titania nanomaterial which in turn used as an efficient photocatalyst for the degradation of rhodamine-B in visible light. S. Afr. J. Chem. Eng. 2017, 23, 10-16.
https://doi.org/10.1016/j.sajce.2016.10.004

[27]. Ahmad, S.; Saeed, A. Synthesis of metal/silica/Titania composites for the photocatalytic removal of methylene blue dye. J. Chem. 2019, 2019, 1-6.
https://doi.org/10.1155/2019/9010289

[28]. Trivedi, M. K.; Dahryn Trivedi, A. B. Spectroscopic characterization of disodium hydrogen orthophosphate and sodium nitrate after biofield treatment. J. Chromatogr. Sep. Tech. 2015, 6 (5), 282-286.
https://doi.org/10.4172/2157-7064.1000282

[29]. Arshad, M.; Qayyum, A.; Abbas, G.; Haider, R.; Iqbal, M.; Nazir, A. Influence of different solvents on portrayal and photocatalytic activity of tin-doped zinc oxide nanoparticles. J. Mol. Liq. 2018, 260, 272-278.
https://doi.org/10.1016/j.molliq.2018.03.074

[30]. Mahamuni, P. P.; Patil, P. M.; Dhanavade, M. J.; Badiger, M. V.; Shadija, P. G.; Lokhande, A. C.; Bohara, R. A. Synthesis and characterization of zinc oxide nanoparticles by using polyol chemistry for their antimicrobial and antibiofilm activity. Biochem. Biophys. Rep. 2019, 17, 71-80.
https://doi.org/10.1016/j.bbrep.2018.11.007

[31]. Zaid, H. M.; Fakhruldi, H.; Yow, F. Y.; Razali, N.; Dasan, Y. K. Synthesis and characterization of titanium dioxide nanoparticles for application in enhanced oil recovery. Defect Diffus. For. 2019, 391, 74-81.
https://doi.org/10.4028/www.scientific.net/DDF.391.74

[32]. Endres, S. C.; Ciacchi, L. C.; Mädler, L. A review of contact force models between nanoparticles in agglomerates, aggregates, and films. J. Aerosol Sci. 2021, 153, 105719-105757.
https://doi.org/10.1016/j.jaerosci.2020.105719

[33]. Mohd Yusof, H.; Mohamad, R.; Zaidan, U. H.; Abdul Rahman, N. A. Microbial synthesis of zinc oxide nanoparticles and their potential application as an antimicrobial agent and a feed supplement in animal industry: a review. J. Anim. Sci. Biotechnol. 2019, 10, 57-78.
https://doi.org/10.1186/s40104-019-0368-z

Supporting Agencies

Pakistan Council of Scientific and Industrial Research, Pakistan.
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).