European Journal of Chemistry

Adsorption studies of hexavalent chromium ions on the dead biomass of Cystoseira indica

Crossmark


Main Article Content

Zahid Mahmood
Samreen Zahra
Izza Ijaz

Abstract

The biosorption of hexavalent chromium ions from aqueous solution was investigated using acid-modified dead biomass of the abundantly available brown marine alga Cystoseira indica from Karachi coastal area of Pakistan. The biosorbent was characterized by infrared spectroscopy and scanning electron microscopy. The optimum biosorption conditions, i.e., biosorbent dosage, contact time, initial metal ion concentration, pH, and temperature, were determined by carrying out batch-mode experiments. The sorption behavior was established by the Langmuir and Freundlich isotherms, which showed that although the uptake of metals was more feasible on a heterogeneous surface, homogeneous surface conditions seemed to exist at the same time. The thermodynamic parameters ∆G°, ∆H° and ∆S° calculated at different temperatures ranging from 298 to 318 K demonstrated that the biosorption was a spontaneous and exothermic process under the experimental conditions applied.


icon graph This Abstract was viewed 524 times | icon graph Article PDF downloaded 267 times

How to Cite
(1)
Mahmood, Z.; Zahra, S.; Ijaz, I. Adsorption Studies of Hexavalent Chromium Ions on the Dead Biomass of Cystoseira Indica. Eur. J. Chem. 2022, 13, 451-459.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Mahmood, Z.; Zahra, S.; Iqbal, M.; Raza, M. A.; Nasir, S. Comparative study of natural and modified biomass of Sargassum sp. for removal of Cd2+ and Zn2+ from wastewater. Appl. Water Sci. 2017, 7, 3469-3481.
https://doi.org/10.1007/s13201-017-0624-3

[2]. Subbaiah, M. V.; Yun, Y. S. Biosorption of Nickel(II) from aqueous solution by the fungal mat of Trametes versicolor (rainbow) biomass: equilibrium, kinetics, and thermodynamic studies. Biotechnol. Bioprocess Eng. 2013, 18, 280-288.
https://doi.org/10.1007/s12257-012-0401-y

[3]. Sánchez, J.; Butter, B.; Basáez, L.; Rivas, B. L.; Thotiyl, M. O. Efficient removal of Cr(VI) by polyelectrolyte-assisted ultrafiltration and subsequent electrochemical reduction to Cr(III). J. Chil. Chem. Soc. 2017, 62, 3647-3652.
https://doi.org/10.4067/s0717-97072017000303647

[4]. Xining, S.; Jingjing, M.; Zengqiang, Z.; Zhiyong, Z. Biosorption of hexavalent chromium from aqueous medium with the antibiotic residue. Adv. J. Food Sci. Technol. 2015, 7, 120-128.
https://doi.org/10.19026/ajfst.7.1279

[5]. Ajouyed, O.; Hurel, C.; Marmier, N. Evaluation of the adsorption of hexavalent chromium on kaolinite and illite. J. Environ. Prot. (Irvine Calif.) 2011, 02, 1347-1352.
https://doi.org/10.4236/jep.2011.210155

[6]. Sharma, Y. C.; Department of Chemistry, Indian Institute of Technology (BHU) Varanasi, Varanasi 221005, India; Jalilnejad, E.; Yarusova, S. Investigation of adsorption characteristics of an engineered adsorbent for removal of hexavalent chromium from aqueous solutions. Int. J. Environ. Sci. Dev. 2017, 8, 195-199.
https://doi.org/10.18178/ijesd.2017.8.3.946

[7]. Ren, B.; Zhang, Q.; Zhang, X.; Zhao, L.; Li, H. Biosorption of Cr(vi) from aqueous solution using dormant spores of Aspergillus niger. RSC Adv. 2018, 8, 38157-38165.
https://doi.org/10.1039/C8RA07084A

[8]. Rizzuti, A. M.; Newkirk, C. R.; Wilson, K. A.; Cosme, L. W.; Cohen, A. D. Biosorption of hexavalent chromium from aqueous solutions using highly characterised peats. Mires Peat 19, 1-10.

[9]. Dhankhar, R.; Hooda, A. Fungal biosorption--an alternative to meet the challenges of heavy metal pollution in aqueous solutions. Environ. Technol. 2011, 32, 467-491.
https://doi.org/10.1080/09593330.2011.572922

[10]. Rearte, T. A.; Bozzano, P. B.; Andrade, M. L.; Fabrizio de Iorio, A. Biosorption of Cr(III) and Pb(II) by Schoenoplectus californicus and insights into the binding mechanism. ISRN Chem. Eng. 2013, 2013, 1-13.
https://doi.org/10.1155/2013/851602

[11]. El Atouani, S.; Tahiri, S.; Reani, A.; Bentiss, F.; El Krati, M.; Sahibed-dine, A.; Schamel, A.; Aarfane, A.; Sabour, B. Hexavalent chromium uptake from aqueous solutions using raw biomass of the invasive brown seaweed Sargassum muticum from the Moroccan shorelines: Kinetics and isotherms. Eur. Sci. J. 2016, 12, 243-262.
https://doi.org/10.19044/esj.2016.v12n30p243

[12]. Kumar, M.; Pal, A.; Singh, J.; Garg, S.; Bala, M.; Vyas, A.; Khasa, Y. P.; Pachouri, U. C. Removal of chromium from water effluent by adsorption onto Vetiveria zizanioides and Anabaena species. Nat. Sci. (Irvine) 2013, 05, 341-348.
https://doi.org/10.4236/ns.2013.53047

[13]. Boddu, S.; Alugunulla, V. N.; Dulla, J. B.; Chavali, M.; Pilli, R. R.; Khan, A. A. Estimation of biosorption characteristics of chromium (VI) from aqueous and real tannery effluents by treated T. vulgaris: experimental assessment and statistical modelling. Int. J. Environ. Anal. Chem. 2020, 1-20.
https://doi.org/10.1080/03067319.2020.1789617

[14]. Seolatto, A. A.; Martins, T. D.; Bergamasco, R.; Tavares, C. R. G.; Cossich, E. S.; Silva, E. A. da Biosorption study of Ni2+ and Cr3+ by Sargassum filipendula: kinetics and equilibrium. Braz. J. Chem. Eng. 2014, 31, 211-227.
https://doi.org/10.1590/S0104-66322014000100020

[15]. Esmaeili, A.; Ghasemi, S.; Rustaiyan, A. Removal of hexavalent chromium using activated carbons derived from marine algae Gracilaria and Sargassum Sp. Journal of Marine Science and Technology 2010, 18, 587-592.
https://doi.org/10.51400/2709-6998.1922

[16]. Koutahzadeh, N.; Daneshvar, E.; Kousha, M.; Sohrabi, M. S.; Bhatnagar, A. Biosorption of hexavalent chromium from aqueous solution by six brown macroalgae. Desalination Water Treat. 2013, 51, 6021-6030.
https://doi.org/10.1080/19443994.2013.764353

[17]. Musah, B. I.; Wan, P.; Xu, Y.; Liang, C.; Peng, L. Biosorption of chromium (VI) and iron (II) by acid-based modified Chlorella vulgaris and Spirulina platensis: isotherms and thermodynamics. Int. J. Environ. Sci. Technol. (Tehran) 2022, 19, 11087-11102.
https://doi.org/10.1007/s13762-021-03873-3

[18]. Rai, R.; Karki, D. R.; Bhattarai, K. P.; Pahari, B.; Shrestha, N.; Adhikari, S.; Gautam, S. K.; Poudel, B. R. Recent advances in biomass-based waste materials for the removal of chromium (VI) from wastewater: A review. Amrit Res. J. 2021, 2, 37-50.
https://doi.org/10.3126/arj.v2i01.40736

[19]. Macalalad, A.; Ebete, Q. R.; Gutierrez, D.; Ramos, M.; Magoling, B. Kinetics and isotherm studies on adsorption of hexavalent chromium using activated carbon from water hyacinth. Chem. Chem. Technol. 2021, 15, 1-8.
https://doi.org/10.23939/chcht15.01.001

[20]. Fleet, M. E.; Deer, W. A.; Howie, R. A.; Zussman, J. Rock-Forming Minerals. Volume 3A Sheet Silicates: Micas. Second edition. London (The Geological Society). 2003, 780 pp. ISBN 1-86239-142-4; 2004.

[21]. Lenza, R. F. S.; Vasconcelos, W. L. Preparation of silica by sol-gel method using formamide. Mater. Res. 2001, 4, 189-194.
https://doi.org/10.1590/S1516-14392001000300008

[22]. Silverstein, R. M.; Webster, F. X.; Kiemle, D. J. The spectrometric identification of organic compounds: International edition; 7th ed.; John Wiley & Sons: Nashville, TN, 2005.

[23]. Roozegar, M.; Behnam, S. An eco-friendly approach for copper (II) biosorption on alga Cystoseira indica and its characterization: Copper removal by alga Cystoseira indica. Environ. Prog. Sustain. Energy 2019, 38, S323-S330.
https://doi.org/10.1002/ep.13044

[24]. Rangabhashiyam, S.; Nakkeeran, E.; Anu, N.; Selvaraju, N. Biosorption potential of a novel powder, prepared from Ficus auriculata leaves, for sequestration of hexavalent chromium from aqueous solutions. Res. Chem. Intermed. 2015, 41, 8405-8424.
https://doi.org/10.1007/s11164-014-1900-6

[25]. Pant, B. D.; Neupane, D.; Paudel, D. R.; Chandra Lohani, P.; Gautam, S. K.; Pokhrel, M. R.; Poudel, B. R. Efficient biosorption of hexavalent chromium from water by modified arecanut leaf sheath. Heliyon 2022, 8, e09283.
https://doi.org/10.1016/j.heliyon.2022.e09283

[26]. Lee, C. L.; H'ng, P. S.; Chin, K. L.; Paridah, M. T.; Rashid, U.; Go, W. Z. Characterization of bioadsorbent produced using incorporated treatment of chemical and carbonization procedures. R. Soc. Open Sci. 2019, 6, 190667.
https://doi.org/10.1098/rsos.190667

[27]. Vo, A. T.; Nguyen, V. P.; Ouakouak, A.; Nieva, A.; Doma, B. T., Jr; Tran, H. N.; Chao, H.-P. Efficient removal of Cr(VI) from water by biochar and activated carbon prepared through hydrothermal carbonization and pyrolysis: Adsorption-coupled reduction mechanism. Water (Basel) 2019, 11, 1164-1177.
https://doi.org/10.3390/w11061164

[28]. Zahra, S.; Mahmood, Z.; Deeba, F.; Sheikh, A.; Bukhari, H.; Mehtab, H. Modification of coconut shell charcoal for metal removal from aqueous solutions. Eur. J. Chem. 2022, 13, 259-266.
https://doi.org/10.5155/eurjchem.13.3.259-266.2248

[29]. Sumalatha, B.; Babu, D. J.; Venkatanarayana, A.; Reddy, P. R.; Sruthi, P. D. Experimental Investigation on Biosorption of Chromium from Aqueous Solution using Citrus limonium peel: Optimization of Process Parameters using Central Composite Design. Res. J. Pharm. Technol. 2018, 11, 5253-5264.
https://doi.org/10.5958/0974-360X.2018.00958.7

[30]. Ogata, F.; Kangawa, M.; Iwata, Y.; Ueda, A.; Tanaka, Y.; Kawasaki, N. A study on the adsorption of heavy metals by using raw wheat bran bioadsorbent in aqueous solution phase. Chem. Pharm. Bull. (Tokyo) 2014, 62, 247-253.
https://doi.org/10.1248/cpb.c13-00701

[31]. Kadirvelu, K.; Namasivayam, C. Activated carbon from coconut coirpith as metal adsorbent: adsorption of Cd(II) from aqueous solution. Adv. Environ. Res. 2003, 7, 471-478.
https://doi.org/10.1016/S1093-0191(02)00018-7

[32]. Medhi, H.; Chowdhury, P. R.; Baruah, P. D.; Bhattacharyya, K. G. Kinetics of aqueous Cu(II) biosorption onto Thevetia peruviana leaf powder. ACS Omega 2020, 5, 13489-13502.
https://doi.org/10.1021/acsomega.9b04032

[33]. Al-Qodah, Z.; Al-Shannag, M.; Amro, A.; Assirey, E.; Bob, M.; Bani-Melhem, K.; Alkasrawi, M. Impact of surface modification of green algal biomass by phosphorylation on the removal of copper(II) ions from water. Turk. J. Chem. 2017, 41, 190-208.
https://doi.org/10.3906/kim-1605-38

[34]. Ali, I. H.; Alrafai, H. A. Kinetic, isotherm and thermodynamic studies on biosorption of chromium(VI) by using activated carbon from leaves of Ficus nitida. Chem. Cent. J. 2016, 10, 36-42.
https://doi.org/10.1186/s13065-016-0180-1

[35]. Wang, Y.; Li, Y.; Zhao, F. J. Bisorption of chromium(VI) from aqueous solutions by Sargassum thunbergii Kuntze. Biotechnol. Biotechnol. Equip. 2014, 28, 259-265.
https://doi.org/10.1080/13102818.2014.907028

[36]. Sabour, B.; Belattmani, Z.; Tahiri, S.; Zrid, R.; Reani, A.; Elatouani, S.; Loukili, H.; Hassouani, M.; Krati, M. E.; Bentiss, F. Bioremoval of hexavalent chromium from aqueous solutions by the brown seaweed Dictyopteris polypodioides. Res. J. Environ. Toxicol. 2015, 9, 218-230.
https://doi.org/10.3923/rjet.2015.218.230

[37]. Saeed, B.; Anwer, H.; Naqvi, S.; Siddiqui, A.; Hashim, S. Biosorption of hexavalent chromium metal ions from an aqueous solution of leaves and bark of Cinnamomum verum via green route. SN Appl. Sci. 2020, 2, 526-539.
https://doi.org/10.1007/s42452-020-2334-y

[38]. Ramachandran, G.; Chackaravarthi, G.; Rajivgandhi, G. N.; Quero, F.; Maruthupandy, M.; Alharbi, N. S.; Kadaikunnan, S.; Khaled, J. M.; Li, W.-J. Biosorption and adsorption isotherm of chromium (VI) ions in aqueous solution using soil bacteria Bacillus amyloliquefaciens. Environ. Res. 2022, 212, 113310.
https://doi.org/10.1016/j.envres.2022.113310

[39]. Vaddi, D. R.; Gurugubelli, T. R.; Koutavarapu, R.; Lee, D.-Y.; Shim, J. Bio-stimulated adsorption of Cr(VI) from aqueous solution by groundnut shell activated carbon@Al embedded material. Catalysts 2022, 12, 290-303.
https://doi.org/10.3390/catal12030290

Supporting Agencies

TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).