European Journal of Chemistry

Modification of coconut shell charcoal for metal removal from aqueous solutions

Crossmark


Main Article Content

Samreen Zahra
Zahid Mahmood
Farah Deeba
Asma Sheikh
Hamim Bukhari
Habiba Mehtab

Abstract

Treatment of the contaminated aqueous solutions to improve their quality is indispensible for their reuse resulting in an emergent challenge to develop facile, nontoxic and less energy consuming techniques to purify water. Present study is therefore aimed at the synthesis of an adsorbent using agricultural waste i.e. coconut shell. The charcoal obtained from coconut shell was modified by acid activation and manganese doping following a simple chemical route. The products were characterized by scanning electron microscopy, energy dispersive X-ray analysis and infrared spectroscopy. Preliminary studies were carried out to compare the adsorption potential of acid modified coconut shell charcoal (AMCSC) and manganese doped coconut shell charcoal (MDCSC) for the removal of chromium (VI) and iron (III) from aqueous solutions. Various physicochemical parameters such as adsorbent dosage, initial metal ions concentration and pH were studied. MDCSC was found to be a better adsorbent for metals as compared to AMCSC and removed chromium more efficiently than iron from synthetic solutions i.e. 56.10% at optimum conditions i.e. 0.6 g/L adsorbent dosage, 10 mg/L initial metal ions concentration and pH = 3. The effect of adsorbents on color and conductivity of the aqueous solutions was also noted; slight variation in color of all the aqueous solutions with a maximum of 91.67% removal was observed.


icon graph This Abstract was viewed 892 times | icon graph Article PDF downloaded 537 times

How to Cite
(1)
Zahra, S.; Mahmood, Z.; Deeba, F.; Sheikh, A.; Bukhari, H.; Mehtab, H. Modification of Coconut Shell Charcoal for Metal Removal from Aqueous Solutions. Eur. J. Chem. 2022, 13, 259-266.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Isaeva, V. I.; Vedenyapina, M. D.; Kurmysheva, A. Y.; Weichgrebe, D.; Nair, R. R.; Nguyen, N. P. T.; Kustov, L. M. Modern carbon-based materials for adsorptive removal of organic and inorganic pollutants from water and wastewater. Molecules 2021, 26, 6628.
https://doi.org/10.3390/molecules26216628

[2]. Hernandez-Ramirez, O.; Holmes, S. M. Novel and modified materials for wastewater treatment applications. J. Mater. Chem. 2008, 18, 2751-2761.
https://doi.org/10.1039/b716941h

[3]. Kim, D.-H.; Kim, B.-H.; Yang, K.-S.; Kang, K.-C.; Lim, Y.-K.; Lee, W.-E. Effect of modification of granular activated carbon on Pb(II) adsorption. J. Korean Chem. Soc. 2011, 55, 896-899.
https://doi.org/10.5012/jkcs.2011.55.5.896

[4]. Halim, A. A.; Latif, T.; Ithnin, A. Ammonia removal from aqueous solution using organic acid modified activated carbon. World Appl. Sci. J. 2013, 24, 1-6.

[5]. ShamsiJazeyi, H.; Kaghazchi, T. Investigation of nitric acid treatment of activated carbon for enhanced aqueous mercury removal. J. Ind. Eng. Chem. 2010, 16, 852-858.
https://doi.org/10.1016/j.jiec.2010.03.012

[6]. Jiuhui, Q. U. Research progress of novel adsorption processes in water purification: a review. J. Environ. Sci. (China) 2008, 20, 1-13.
https://doi.org/10.1016/S1001-0742(08)60001-7

[7]. Santiago, M.; Stüber, F.; Fortuny, A.; Fabregat, A.; Font, J. Modified activated carbons for catalytic wet air oxidation of phenol. Carbon N. Y. 2005, 43, 2134-2145.
https://doi.org/10.1016/j.carbon.2005.03.026

[8]. Edwin Vasu, A. Surface modification of activated carbon for enhancement of nickel(II) adsorption. E-J. Chem. 2008, 5, 814-819.
https://doi.org/10.1155/2008/610503

[9]. Zhang, J. Phenol removal from water with potassium permanganate modified granular activated carbon. J. Environ. Prot. (Irvine Calif.) 2013, 04, 411-417.
https://doi.org/10.4236/jep.2013.45049

[10]. Nomanbhay, S. M.; Palanisamy, K. Removal of heavy metal from industrial wastewater using chitosan coated oil palm shell charcoal. Electron. J. Biotechnol. 2005, 8, 43-53.
https://doi.org/10.2225/vol8-issue1-fulltext-7

[11]. Rahman, M. A.; Asadullah, M.; Haque, M. M.; Motin, M. A.; Sultan, M. B.; Azad, M. A. K. Preparation and characterization of activated charcoal as an adsorbent. J. Surf. Sci. Technol. 2006, 22, 133-140.

[12]. Cheung, W. H.; Lau, S. S. Y.; Leung, S. Y.; Ip, A. W. M.; McKay, G. Characteristics of chemical modified activated carbons from bamboo scaffolding. Chin. J. Chem. Eng. 2012, 20, 515-523.
https://doi.org/10.1016/S1004-9541(11)60213-9

[13]. Barjasteh-Askari, F.; Davoudi, M.; Dolatabadi, M.; Ahmadzadeh, S. Iron-modified activated carbon derived from agro-waste for enhanced dye removal from aqueous solutions. Heliyon 2021, 7, e07191.
https://doi.org/10.1016/j.heliyon.2021.e07191

[14]. Chen, W.-S.; Chen, Y.-C.; Lee, C.-H. Modified activated carbon for copper ion removal from aqueous solution. Processes (Basel) 2022, 10, 150-165.
https://doi.org/10.3390/pr10010150

[15]. Amuda, O. S.; Giwa, A. A.; Bello, I. A. Removal of heavy metal from industrial wastewater using modified activated coconut shell carbon. Biochem. Eng. J. 2007, 36, 174-181.
https://doi.org/10.1016/j.bej.2007.02.013

[16]. Sousa, F. W.; Oliveira, A. G.; Ribeiro, J. P.; Rosa, M. F.; Keukeleire, D.; Nascimento, R. F. Green coconut shells applied as adsorbent for removal of toxic metal ions using fixed-bed column technology. J. Environ. Manage. 2010, 91, 1634-1640.
https://doi.org/10.1016/j.jenvman.2010.02.011

[17]. Rahman, M. M.; Adil, M.; Yusof, A. M.; Kamaruzzaman, Y. B.; Ansary, R. H. Removal of heavy metal ions with acid activated carbons derived from oil palm and coconut shells. Materials (Basel) 2014, 7, 3634-3650.
https://doi.org/10.3390/ma7053634

[18]. James, A.; Yadav, D. Valorization of coconut waste for facile treatment of contaminated water: A comprehensive review (2010-2021). Environ. technol. innov. 2021, 24, 102075.
https://doi.org/10.1016/j.eti.2021.102075

[19]. Naseem, T.; Durrani, T. The role of some important metal oxide nanoparticles for wastewater and antibacterial applications: A review. Environmental Chemistry and Ecotoxicology 2021, 3, 59-75.
https://doi.org/10.1016/j.enceco.2020.12.001

[20]. Warner, C. L.; Chouyyok, W.; Mackie, K. E.; Neiner, D.; Saraf, L. V.; Droubay, T. C.; Warner, M. G.; Addleman, R. S. Manganese doping of magnetic iron oxide nanoparticles: tailoring surface reactivity for a regenerable heavy metal sorbent. Langmuir 2012, 28, 3931-3937.
https://doi.org/10.1021/la2042235

[21]. Wang, X. Nanomaterials as sorbents to remove heavy metal ions in wastewater treatment. J. Environ. Anal. Toxicol. 2012, 02, 1-7.
https://doi.org/10.4172/2161-0525.1000154

[22]. Deng, J.-H.; Zhang, X.-R.; Zeng, G.-M.; Gong, J.-L.; Niu, Q.-Y.; Liang, J. Simultaneous removal of Cd(II) and ionic dyes from aqueous solution using magnetic graphene oxide nanocomposite as an adsorbent. Chem. Eng. J. 2013, 226, 189-200.
https://doi.org/10.1016/j.cej.2013.04.045

[23]. Lo, S.-F.; Wang, S.-Y.; Tsai, M.-J.; Lin, L.-D. Adsorption capacity and removal efficiency of heavy metal ions by Moso and Ma bamboo activated carbons. Chem. Eng. Res. Des. 2012, 90, 1397-1406.
https://doi.org/10.1016/j.cherd.2011.11.020

[24]. Das, D.; Samal, D. P.; Bc, M. Preparation of activated carbon from green coconut shell and its characterization. J. Chem. Eng. Process Technol. 2015, 6, 1-7.
https://doi.org/10.4172/2157-7048.1000248

[25]. Budi, E.; Umiatin; Nasbey, H.; Bintoro, R. A.; Wulandari, F.; Erlina Activated coconut shell charcoal carbon using chemical-physical activation. AIP Conference Proceedings. In AIP Publishing LLC, 2016.
https://doi.org/10.1063/1.4941886

[26]. Sulistyani, E.; Tamado, D. B.; Wulandari, F.; Budi, E. Coconut shell activated carbon as an alternative renewable energy. KnE energy 2015, 2, 76-81.
https://doi.org/10.18502/ken.v2i2.360

[27]. Budi, E.; Nasbey, H.; Yuniarti, B. D. P.; Nurmayatri, Y.; Fahdiana, J.; Budi, A. S. Pore structure of the activated coconut shell charcoal carbon. AIP Conference Proceedings. In; AIP Publishing LLC, 2014.
https://doi.org/10.1063/1.4897121

[28]. Islam, M. S.; Ang, B. C.; Gharehkhani, S.; Afifi, A. B. M. Adsorption capability of activated carbon synthesized from coconut shell. Carbon lett. 2016, 20, 1-9.
https://doi.org/10.5714/CL.2016.20.001

[29]. Sanni, E. S.; Emetere, M. E.; Odigure, J. O.; Efeovbokhan, V. E.; Agboola, O.; Sadiku, E. R. Determination of optimum conditions for the production of activated carbon derived from separate varieties of coconut shells. Int. J. Chem. Eng. 2017, 2017, 1-16.
https://doi.org/10.1155/2017/2801359

[30]. Maulidiyah, M.; Wibowo, D.; Hikmawati, H.; Salamba, R.; Nurdin, M. Preparation and characterization of activated carbon from coconut shell - doped Tio2 in water solution. Orient. J. Chem. 2015, 31, 2337-2342.
https://doi.org/10.13005/ojc/310462

[31]. Bojić, D. V.; Ranđelović, M. S.; Zarubica, A. R.; Mitrović, J. Z.; Radović, M. D.; Purenović, M. M.; Bojić, A. L. Comparison of new biosorbents based on chemically modifiedLagenaria vulgarisshell. Desalination Water Treat. 2013, 51, 6871-6881.
https://doi.org/10.1080/19443994.2013.771287

[32]. Mahmood, Z.; Zahra, S.; Iqbal, M.; Raza, M. A.; Nasir, S. Comparative study of natural and modified biomass of Sargassum sp. for removal of Cd2+ and Zn2+ from wastewater. Appl. Water Sci. 2017, 7, 3469-3481.
https://doi.org/10.1007/s13201-017-0624-3

[33]. Shrestha, S. Chemical, Structural and Elemental Characterization of Biosorbents Using FE-SEM, SEM-EDX, XRD/XRPD and ATR-FTIR Techniques. J. Chem. Eng. Process Technol. 2016, 7, 1-11.
https://doi.org/10.4172/2157-7048.1000295

[34]. Liu, L.; Shi, J.; Zhang, X.; Liu, J. Flower-like Mn-doped CeO2Microstructures: Synthesis, characterizations, and catalytic properties. J. Chem. 2015, 2015, 1-11.
https://doi.org/10.1155/2015/254750

[35]. Silverstein, R. M.; Webster, F. X.; Kiemle, D. J. The spectrometric identification of organic compounds; 7th ed.; John Wiley & Sons: Nashville, TN, 2005.

[36]. Babel, S.; Kurniawan, T. A. Cr(VI) removal from synthetic wastewater using coconut shell charcoal and commercial activated carbon modified with oxidizing agents and/or chitosan. Chemosphere 2004, 54, 951-967.
https://doi.org/10.1016/j.chemosphere.2003.10.001

[37]. Song, C.; Wu, S.; Cheng, M.; Tao, P.; Shao, M.; Gao, G. Adsorption studies of coconut shell carbons prepared by KOH activation for removal of lead(II) from aqueous solutions. Sustainability 2013, 6, 86-98.
https://doi.org/10.3390/su6010086

[38]. Ugwu, E. I.; Tursunov, O.; Kodirov, D.; Shaker, L. M.; Al-Amiery, A. A.; Yangibaeva, I.; Shavkarov, F. Adsorption mechanisms for heavy metal removal using low cost adsorbents: A review. IOP Conf. Ser. Earth Environ. Sci. 2020, 614, 012166.
https://doi.org/10.1088/1755-1315/614/1/012166

[39]. Gładysz-Płaska, A.; Majdan, M.; Pikus, S.; Sternik, D. Simultaneous adsorption of chromium(VI) and phenol on natural red clay modified by HDTMA. Chem. Eng. J. 2012, 179, 140-150.
https://doi.org/10.1016/j.cej.2011.10.071

[40]. Bhattacharyya, K. G.; Gupta, S. S. Adsorption of Fe(III) from water by natural and acid activated clays: Studies on equilibrium isotherm, kinetics and thermodynamics of interactions. Adsorption (Boston) 2006, 12, 185-204.
https://doi.org/10.1007/s10450-006-0145-0

Supporting Agencies

TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).