European Journal of Chemistry 2022, 13(3), 259-266 | doi: https://doi.org/10.5155/eurjchem.13.3.259-266.2248 | Get rights and content

Issue cover




Crossmark

  Open Access OPEN ACCESS | Open Access PEER-REVIEWED | RESEARCH ARTICLE | DOWNLOAD PDF | VIEW FULL-TEXT PDF | TOTAL VIEWS

Modification of coconut shell charcoal for metal removal from aqueous solutions


Samreen Zahra (1,*) orcid , Zahid Mahmood (2) orcid , Farah Deeba (3) orcid , Asma Sheikh (4) orcid , Hamim Bukhari (5) orcid , Habiba Mehtab (6) orcid

(1) Mineral Processing Research Centre, Pakistan Council of Scientific and Industrial Research Laboratories Complex, Ferozepur Road, Lahore-54600, Pakistan
(2) Mineral Processing Research Centre, Pakistan Council of Scientific and Industrial Research Laboratories Complex, Ferozepur Road, Lahore-54600, Pakistan
(3) Centre for Environmental Protection Studies, Pakistan Council of Scientific and Industrial Research Laboratories Complex, Ferozepur Road, Lahore-54600, Pakistan
(4) Mineral Processing Research Centre, Pakistan Council of Scientific and Industrial Research Laboratories Complex, Ferozepur Road, Lahore-54600, Pakistan
(5) Department of Chemistry, Post Graduate Islamia College, Cooper Road, Lahore-54000, Pakistan
(6) Department of Chemistry, Post Graduate Islamia College, Cooper Road, Lahore-54000, Pakistan
(*) Corresponding Author

Received: 08 Mar 2022 | Revised: 30 Apr 2022 | Accepted: 09 May 2022 | Published: 30 Sep 2022 | Issue Date: September 2022

Abstract


Treatment of the contaminated aqueous solutions to improve their quality is indispensible for their reuse resulting in an emergent challenge to develop facile, nontoxic and less energy consuming techniques to purify water. Present study is therefore aimed at the synthesis of an adsorbent using agricultural waste i.e. coconut shell. The charcoal obtained from coconut shell was modified by acid activation and manganese doping following a simple chemical route. The products were characterized by scanning electron microscopy, energy dispersive X-ray analysis and infrared spectroscopy. Preliminary studies were carried out to compare the adsorption potential of acid modified coconut shell charcoal (AMCSC) and manganese doped coconut shell charcoal (MDCSC) for the removal of chromium (VI) and iron (III) from aqueous solutions. Various physicochemical parameters such as adsorbent dosage, initial metal ions concentration and pH were studied. MDCSC was found to be a better adsorbent for metals as compared to AMCSC and removed chromium more efficiently than iron from synthetic solutions i.e. 56.10% at optimum conditions i.e. 0.6 g/L adsorbent dosage, 10 mg/L initial metal ions concentration and pH = 3. The effect of adsorbents on color and conductivity of the aqueous solutions was also noted; slight variation in color of all the aqueous solutions with a maximum of 91.67% removal was observed.


Announcements


Our editors have decided to support scientists to publish their manuscripts in European Journal of Chemistry without any financial constraints.

1- The article processing fee will not be charged from the articles containing the single-crystal structure characterization between November 15, 2022 and December 28, 2022 (Voucher code: SINGLE2022).

2. Young writers will not be charged for the article processing fee between November 15, 2022 and December 28, 2022 (Voucher code: YOUNG2022).

3. The article processing fee will not be charged from the articles containing a part of the PhD thesis between November 15, 2022 and December 28, 2022 (Voucher code: PhD2022).

4. The article processing fee will not be charged from authors who have at least one publication in the European Journal of Chemistry between November 15, 2022 and December 28, 2022 (Voucher code: (Voucher code: AUTHOR2022).

Editor-in-Chief

European Journal of Chemistry

Keywords


Iron (III); Adsorbent; Acid activation; Chromium (VI); Manganese doping; Coconut shell charcoal

Full Text:

PDF
PDF    Open Access

DOI: 10.5155/eurjchem.13.3.259-266.2248

Links for Article


| | | | | |

| | | | | | |

| | | |

Related Articles




Article Metrics

icon graph This Abstract was viewed 182 times | icon graph PDF Article downloaded 64 times


References


[1]. Isaeva, V. I.; Vedenyapina, M. D.; Kurmysheva, A. Y.; Weichgrebe, D.; Nair, R. R.; Nguyen, N. P. T.; Kustov, L. M. Modern carbon-based materials for adsorptive removal of organic and inorganic pollutants from water and wastewater. Molecules 2021, 26, 6628.
https://doi.org/10.3390/molecules26216628

[2]. Hernandez-Ramirez, O.; Holmes, S. M. Novel and modified materials for wastewater treatment applications. J. Mater. Chem. 2008, 18, 2751-2761.
https://doi.org/10.1039/b716941h

[3]. Kim, D.-H.; Kim, B.-H.; Yang, K.-S.; Kang, K.-C.; Lim, Y.-K.; Lee, W.-E. Effect of modification of granular activated carbon on Pb(II) adsorption. J. Korean Chem. Soc. 2011, 55, 896-899.
https://doi.org/10.5012/jkcs.2011.55.5.896

[4]. Halim, A. A.; Latif, T.; Ithnin, A. Ammonia removal from aqueous solution using organic acid modified activated carbon. World Appl. Sci. J. 2013, 24, 1-6.

[5]. ShamsiJazeyi, H.; Kaghazchi, T. Investigation of nitric acid treatment of activated carbon for enhanced aqueous mercury removal. J. Ind. Eng. Chem. 2010, 16, 852-858.
https://doi.org/10.1016/j.jiec.2010.03.012

[6]. Jiuhui, Q. U. Research progress of novel adsorption processes in water purification: a review. J. Environ. Sci. (China) 2008, 20, 1-13.
https://doi.org/10.1016/S1001-0742(08)60001-7

[7]. Santiago, M.; Stüber, F.; Fortuny, A.; Fabregat, A.; Font, J. Modified activated carbons for catalytic wet air oxidation of phenol. Carbon N. Y. 2005, 43, 2134-2145.
https://doi.org/10.1016/j.carbon.2005.03.026

[8]. Edwin Vasu, A. Surface modification of activated carbon for enhancement of nickel(II) adsorption. E-J. Chem. 2008, 5, 814-819.
https://doi.org/10.1155/2008/610503

[9]. Zhang, J. Phenol removal from water with potassium permanganate modified granular activated carbon. J. Environ. Prot. (Irvine Calif.) 2013, 04, 411-417.
https://doi.org/10.4236/jep.2013.45049

[10]. Nomanbhay, S. M.; Palanisamy, K. Removal of heavy metal from industrial wastewater using chitosan coated oil palm shell charcoal. Electron. J. Biotechnol. 2005, 8, 43-53.
https://doi.org/10.2225/vol8-issue1-fulltext-7

[11]. Rahman, M. A.; Asadullah, M.; Haque, M. M.; Motin, M. A.; Sultan, M. B.; Azad, M. A. K. Preparation and characterization of activated charcoal as an adsorbent. J. Surf. Sci. Technol. 2006, 22, 133-140.

[12]. Cheung, W. H.; Lau, S. S. Y.; Leung, S. Y.; Ip, A. W. M.; McKay, G. Characteristics of chemical modified activated carbons from bamboo scaffolding. Chin. J. Chem. Eng. 2012, 20, 515-523.
https://doi.org/10.1016/S1004-9541(11)60213-9

[13]. Barjasteh-Askari, F.; Davoudi, M.; Dolatabadi, M.; Ahmadzadeh, S. Iron-modified activated carbon derived from agro-waste for enhanced dye removal from aqueous solutions. Heliyon 2021, 7, e07191.
https://doi.org/10.1016/j.heliyon.2021.e07191

[14]. Chen, W.-S.; Chen, Y.-C.; Lee, C.-H. Modified activated carbon for copper ion removal from aqueous solution. Processes (Basel) 2022, 10, 150-165.
https://doi.org/10.3390/pr10010150

[15]. Amuda, O. S.; Giwa, A. A.; Bello, I. A. Removal of heavy metal from industrial wastewater using modified activated coconut shell carbon. Biochem. Eng. J. 2007, 36, 174-181.
https://doi.org/10.1016/j.bej.2007.02.013

[16]. Sousa, F. W.; Oliveira, A. G.; Ribeiro, J. P.; Rosa, M. F.; Keukeleire, D.; Nascimento, R. F. Green coconut shells applied as adsorbent for removal of toxic metal ions using fixed-bed column technology. J. Environ. Manage. 2010, 91, 1634-1640.
https://doi.org/10.1016/j.jenvman.2010.02.011

[17]. Rahman, M. M.; Adil, M.; Yusof, A. M.; Kamaruzzaman, Y. B.; Ansary, R. H. Removal of heavy metal ions with acid activated carbons derived from oil palm and coconut shells. Materials (Basel) 2014, 7, 3634-3650.
https://doi.org/10.3390/ma7053634

[18]. James, A.; Yadav, D. Valorization of coconut waste for facile treatment of contaminated water: A comprehensive review (2010-2021). Environ. technol. innov. 2021, 24, 102075.
https://doi.org/10.1016/j.eti.2021.102075

[19]. Naseem, T.; Durrani, T. The role of some important metal oxide nanoparticles for wastewater and antibacterial applications: A review. Environmental Chemistry and Ecotoxicology 2021, 3, 59-75.
https://doi.org/10.1016/j.enceco.2020.12.001

[20]. Warner, C. L.; Chouyyok, W.; Mackie, K. E.; Neiner, D.; Saraf, L. V.; Droubay, T. C.; Warner, M. G.; Addleman, R. S. Manganese doping of magnetic iron oxide nanoparticles: tailoring surface reactivity for a regenerable heavy metal sorbent. Langmuir 2012, 28, 3931-3937.
https://doi.org/10.1021/la2042235

[21]. Wang, X. Nanomaterials as sorbents to remove heavy metal ions in wastewater treatment. J. Environ. Anal. Toxicol. 2012, 02, 1-7.
https://doi.org/10.4172/2161-0525.1000154

[22]. Deng, J.-H.; Zhang, X.-R.; Zeng, G.-M.; Gong, J.-L.; Niu, Q.-Y.; Liang, J. Simultaneous removal of Cd(II) and ionic dyes from aqueous solution using magnetic graphene oxide nanocomposite as an adsorbent. Chem. Eng. J. 2013, 226, 189-200.
https://doi.org/10.1016/j.cej.2013.04.045

[23]. Lo, S.-F.; Wang, S.-Y.; Tsai, M.-J.; Lin, L.-D. Adsorption capacity and removal efficiency of heavy metal ions by Moso and Ma bamboo activated carbons. Chem. Eng. Res. Des. 2012, 90, 1397-1406.
https://doi.org/10.1016/j.cherd.2011.11.020

[24]. Das, D.; Samal, D. P.; Bc, M. Preparation of activated carbon from green coconut shell and its characterization. J. Chem. Eng. Process Technol. 2015, 6, 1-7.
https://doi.org/10.4172/2157-7048.1000248

[25]. Budi, E.; Umiatin; Nasbey, H.; Bintoro, R. A.; Wulandari, F.; Erlina Activated coconut shell charcoal carbon using chemical-physical activation. AIP Conference Proceedings. In AIP Publishing LLC, 2016.
https://doi.org/10.1063/1.4941886

[26]. Sulistyani, E.; Tamado, D. B.; Wulandari, F.; Budi, E. Coconut shell activated carbon as an alternative renewable energy. KnE energy 2015, 2, 76-81.
https://doi.org/10.18502/ken.v2i2.360

[27]. Budi, E.; Nasbey, H.; Yuniarti, B. D. P.; Nurmayatri, Y.; Fahdiana, J.; Budi, A. S. Pore structure of the activated coconut shell charcoal carbon. AIP Conference Proceedings. In; AIP Publishing LLC, 2014.
https://doi.org/10.1063/1.4897121

[28]. Islam, M. S.; Ang, B. C.; Gharehkhani, S.; Afifi, A. B. M. Adsorption capability of activated carbon synthesized from coconut shell. Carbon lett. 2016, 20, 1-9.
https://doi.org/10.5714/CL.2016.20.001

[29]. Sanni, E. S.; Emetere, M. E.; Odigure, J. O.; Efeovbokhan, V. E.; Agboola, O.; Sadiku, E. R. Determination of optimum conditions for the production of activated carbon derived from separate varieties of coconut shells. Int. J. Chem. Eng. 2017, 2017, 1-16.
https://doi.org/10.1155/2017/2801359

[30]. Maulidiyah, M.; Wibowo, D.; Hikmawati, H.; Salamba, R.; Nurdin, M. Preparation and characterization of activated carbon from coconut shell - doped Tio2 in water solution. Orient. J. Chem. 2015, 31, 2337-2342.
https://doi.org/10.13005/ojc/310462

[31]. Bojić, D. V.; Ranđelović, M. S.; Zarubica, A. R.; Mitrović, J. Z.; Radović, M. D.; Purenović, M. M.; Bojić, A. L. Comparison of new biosorbents based on chemically modifiedLagenaria vulgarisshell. Desalination Water Treat. 2013, 51, 6871-6881.
https://doi.org/10.1080/19443994.2013.771287

[32]. Mahmood, Z.; Zahra, S.; Iqbal, M.; Raza, M. A.; Nasir, S. Comparative study of natural and modified biomass of Sargassum sp. for removal of Cd2+ and Zn2+ from wastewater. Appl. Water Sci. 2017, 7, 3469-3481.
https://doi.org/10.1007/s13201-017-0624-3

[33]. Shrestha, S. Chemical, Structural and Elemental Characterization of Biosorbents Using FE-SEM, SEM-EDX, XRD/XRPD and ATR-FTIR Techniques. J. Chem. Eng. Process Technol. 2016, 7, 1-11.
https://doi.org/10.4172/2157-7048.1000295

[34]. Liu, L.; Shi, J.; Zhang, X.; Liu, J. Flower-like Mn-doped CeO2Microstructures: Synthesis, characterizations, and catalytic properties. J. Chem. 2015, 2015, 1-11.
https://doi.org/10.1155/2015/254750

[35]. Silverstein, R. M.; Webster, F. X.; Kiemle, D. J. The spectrometric identification of organic compounds; 7th ed.; John Wiley & Sons: Nashville, TN, 2005.

[36]. Babel, S.; Kurniawan, T. A. Cr(VI) removal from synthetic wastewater using coconut shell charcoal and commercial activated carbon modified with oxidizing agents and/or chitosan. Chemosphere 2004, 54, 951-967.
https://doi.org/10.1016/j.chemosphere.2003.10.001

[37]. Song, C.; Wu, S.; Cheng, M.; Tao, P.; Shao, M.; Gao, G. Adsorption studies of coconut shell carbons prepared by KOH activation for removal of lead(II) from aqueous solutions. Sustainability 2013, 6, 86-98.
https://doi.org/10.3390/su6010086

[38]. Ugwu, E. I.; Tursunov, O.; Kodirov, D.; Shaker, L. M.; Al-Amiery, A. A.; Yangibaeva, I.; Shavkarov, F. Adsorption mechanisms for heavy metal removal using low cost adsorbents: A review. IOP Conf. Ser. Earth Environ. Sci. 2020, 614, 012166.
https://doi.org/10.1088/1755-1315/614/1/012166

[39]. Gładysz-Płaska, A.; Majdan, M.; Pikus, S.; Sternik, D. Simultaneous adsorption of chromium(VI) and phenol on natural red clay modified by HDTMA. Chem. Eng. J. 2012, 179, 140-150.
https://doi.org/10.1016/j.cej.2011.10.071

[40]. Bhattacharyya, K. G.; Gupta, S. S. Adsorption of Fe(III) from water by natural and acid activated clays: Studies on equilibrium isotherm, kinetics and thermodynamics of interactions. Adsorption (Boston) 2006, 12, 185-204.
https://doi.org/10.1007/s10450-006-0145-0


How to cite


Zahra, S.; Mahmood, Z.; Deeba, F.; Sheikh, A.; Bukhari, H.; Mehtab, H. Eur. J. Chem. 2022, 13(3), 259-266. doi:10.5155/eurjchem.13.3.259-266.2248
Zahra, S.; Mahmood, Z.; Deeba, F.; Sheikh, A.; Bukhari, H.; Mehtab, H. Modification of coconut shell charcoal for metal removal from aqueous solutions. Eur. J. Chem. 2022, 13(3), 259-266. doi:10.5155/eurjchem.13.3.259-266.2248
Zahra, S., Mahmood, Z., Deeba, F., Sheikh, A., Bukhari, H., & Mehtab, H. (2022). Modification of coconut shell charcoal for metal removal from aqueous solutions. European Journal of Chemistry, 13(3), 259-266. doi:10.5155/eurjchem.13.3.259-266.2248
Zahra, Samreen, Zahid Mahmood, Farah Deeba, Asma Sheikh, Hamim Bukhari, & Habiba Mehtab. "Modification of coconut shell charcoal for metal removal from aqueous solutions." European Journal of Chemistry [Online], 13.3 (2022): 259-266. Web. 3 Dec. 2022
Zahra, Samreen, Mahmood, Zahid, Deeba, Farah, Sheikh, Asma, Bukhari, Hamim, AND Mehtab, Habiba. "Modification of coconut shell charcoal for metal removal from aqueous solutions" European Journal of Chemistry [Online], Volume 13 Number 3 (30 September 2022)

The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item



DOI Link: https://doi.org/10.5155/eurjchem.13.3.259-266.2248


CrossRef | Scilit | GrowKudos | Researchgate | Publons | ScienceGate | Scite | Lens | OUCI

WorldCat Paperbuzz | LibKey Citeas | Dimensions | Semanticscholar | Plumx | Kopernio | Zotero | Mendeley

ZoteroSave to Zotero MendeleySave to Mendeley



European Journal of Chemistry 2022, 13(3), 259-266 | doi: https://doi.org/10.5155/eurjchem.13.3.259-266.2248 | Get rights and content

Refbacks

  • There are currently no refbacks.




Copyright (c) 2022 Authors

Creative Commons License
This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at http://www.eurjchem.com/index.php/eurjchem/pages/view/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (http://www.eurjchem.com/index.php/eurjchem/pages/view/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).



© Copyright 2010 - 2022  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2010-2022 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.