

Synthesis, crystal structure, and antidiabetic property of hydrazine functionalized Schiff base: 1,2-Di(benzylidene)hydrazine
Nilankar Diyali (1)




(1) Department of Chemistry, University of North Bengal, Darjeeling, 734013, India
(2) Department of Chemistry, University of North Bengal, Darjeeling, 734013, India
(3) Department of Chemistry, University of North Bengal, Darjeeling, 734013, India
(4) Department of Chemistry, University of North Bengal, Darjeeling, 734013, India
(*) Corresponding Author
Received: 10 Mar 2022 | Revised: 17 Apr 2022 | Accepted: 27 Apr 2022 | Published: 30 Jun 2022 | Issue Date: June 2022
Abstract
Hydrazine functionalized Schiff base, 1,2-di(benzylidene)hydrazine has been synthesized through a condensation between hydrazine and benzaldehyde under reflux, and structurally characterized. The crystal structure analysis reveals that the Schiff base crystallizes in an orthorhombic crystal system with the Pbcn space group. Crystal data for C14H12N2: a = 13.130(2) Å, b = 11.801(2) Å, c = 7.5649(16) Å, V = 1172.1(4) Å3, Z = 4, T = 298.0(2) K, μ(MoKα) = 0.071 mm-1, Dcalc = 1.180 g/cm3, 10252 reflections measured (6.206° ≤ 2Θ ≤ 65.352°), 2027 unique (Rint = 0.0381, Rsigma = 0.0283) which were used in all calculations. The final R1 was 0.0627 (I > 2σ(I)) and wR2 was 0.2462 (all data). It is evident that the imine protons are intramolecularly locked with the imine-N bond, and the phenyl rings exist in anti orientation with respect to the =N-N= bond adopting a nearly planar conformation. The Schiff base grows a one-dimensional framework in the crystalline phase through long-distant C-H···π interaction. Hirshfeld surface and energy framework analyses have also been performed to understand the supramolecular forces and their contributions meticulously. The hydrazine functionalized Schiff base showed an excellent antidiabetic activity through α-amylase inhibitory assay relative to a standard compound, acarbose under an identical condition.
Announcements
Our editors have decided to support scientists to publish their manuscripts in European Journal of Chemistry without any financial constraints.
1- The article processing fee will not be charged from the articles containing the single-crystal structure characterization or a DFT study between September 15, 2023 and October 31, 2023 (Voucher code: FALL2023).
2. A 50% discount will be applied to the article processing fee for submissions made between September 15, 2023 and October 31, 2023 by authors who have at least one publication in the European Journal of Chemistry (Voucher code: AUTHOR-3-2023).
3. Young writers will not be charged for the article processing fee between September 15, 2023 and October 31, 2023 (Voucher code: YOUNG2023).
Editor-in-Chief
European Journal of Chemistry
Keywords
Full Text:
PDF

DOI: 10.5155/eurjchem.13.2.234-240.2265
Links for Article
| | | | | | |
| | | | | | |
| | | |
Related Articles
Article Metrics


Citations
[1]. Vivek Prakash Malviya, Archisman Dutta
A new hydrazide functionalized Schiff’s base derivative: Insights into crystallography, Hirshfeld surface, and energy framework analysis
European Journal of Chemistry 13(3), 351, 2022
DOI: 10.5155/eurjchem.13.3.351-357.2310

[2]. Paresh Narayan Patel, Shivani Nagindas Tandel, Amar Ghanshyam Deshmukh, Preksha Basant Patel
Study on novel biphenyl chalcone scaffolds: A dual spectroscopic approach for efficient sensing of hydrazine with low concentration
European Journal of Chemistry 14(2), 264, 2023
DOI: 10.5155/eurjchem.14.2.264-272.2380

References
[1]. Jucker, E. Recent pharmaceutical research on hydrazine derivatives. Pure Appl. Chem. 1963, 6, 409-434.
https://doi.org/10.1351/pac196306030409
[2]. Toki, T.; Koyanagi, T.; Yoshida, K.; Yamamoto, K.; Morita, M. Hydrazine compounds usesful as pesticides. 5304657, April 19, 1994.
[3]. Butufei, O.; Mazare, M.; Deaconescu, I.; Rolea, G.; Pascu, C.; Nicolescu, I. V. Polymer Catalysts. J. Macromol. Sci. - Chem. 1985, 22, 889-895.
https://doi.org/10.1080/00222338508056642
[4]. Parravano, G. Polymerization induced by catalytic decomposition of hydrazine at palladium surfaces. J. Am. Chem. Soc. 1950, 72, 3856-3860.
https://doi.org/10.1021/ja01165a006
[5]. Evans, D. D.; Price, T. W. The status of monopropellant hydrazine technology, JPL Technical Report 1968, 32-722. https://ntrs.nasa.gov/api/citations/19680006875/downloads/19680006875.pdf (accessed April 10, 2022).
[6]. Clark, J. D. Ignition!: An informal history of liquid rocket propellants; Rutgers University Press: New Brunswick, NJ, 2018.
https://doi.org/10.2307/j.ctv157bf4
[7]. Roy, S.; Paul, P.; Karar, M.; Joshi, M.; Paul, S.; Choudhury, A. R.; Biswas, B. Cascade detection of fluoride and bisulphate ions by newly developed hydrazine functionalised Schiff bases. J. Mol. Liq. 2021, 326, 115293.
https://doi.org/10.1016/j.molliq.2021.115293
[8]. Future Market Insights Global; Consulting Pvt. Ltd. Hydrazine Hydrate Market to be worth US$ 683.1 Million by the year 2030 - Comprehensive Research Report by FMI. https://finance.yahoo.com/news/hydrazine-hydrate-market-worth-us-180000622.html (accessed April 10, 2022).
[9]. Costoyas, Á.; Ramos, J.; Forcada, J. Hydrazine-functionalized latexes: Hydrazine-functionalized latexes. J. Polym. Sci. A Polym. Chem. 2009, 47, 6201-6213.
https://doi.org/10.1002/pola.23663
[10]. Huang, G.; Sun, Z.; Qin, H.; Zhao, L.; Xiong, Z.; Peng, X.; Ou, J.; Zou, H. Preparation of hydrazine functionalized polymer brushes hybrid magnetic nanoparticles for highly specific enrichment of glycopeptides. Analyst 2014, 139, 2199-2206.
https://doi.org/10.1039/c4an00076e
[11]. Afzal, S.; Al-Rashida, M.; Hameed, A.; Pelletier, J.; Sévigny, J.; Iqbal, J. Functionalized oxoindolin hydrazine carbothioamide derivatives as highly potent inhibitors of nucleoside triphosphate diphospho hydrolases. Front. Pharmacol. 2020, 11, 585876.
https://doi.org/10.3389/fphar.2020.585876
[12]. Jha, A. K.; Sarita; Easwar, S. Unsymmetrical N,N'-functionalization of hydrazine by insertion into Morita-Baylis-Hillman ketones. Tetrahedron Lett. 2021, 69, 152971.
https://doi.org/10.1016/j.tetlet.2021.152971
[13]. Sani, U.; Dailami, S. A. Synthesis, characterization, antimicrobial activity and antioxidant studies of metal (II) complexes of Schiff base derived from 2 - hydroxy - 1- naphthaldehyde and hydrazine mono hydrate. ChemSearch Journal 2015, 6, 35-41.
[14]. Ceramella, J.; Iacopetta, D.; Catalano, A.; Cirillo, F.; Lappano, R.; Sinicropi, M. S. A review on the antimicrobial activity of Schiff bases: Data collection and recent studies. Antibiotics (Basel) 2022, 11, 191.
https://doi.org/10.3390/antibiotics11020191
[15]. Manimohan, M.; Pugalmani, S.; Sithique, M. A. Biologically active novel N, N, O donor tridentate water soluble hydrazide based O-carboxymethyl chitosan Schiff base Cu (II) metal complexes: Synthesis and characterisation. Int. J. Biol. Macromol. 2019, 136, 738-754.
https://doi.org/10.1016/j.ijbiomac.2019.06.115
[16]. da Silva, C. M.; da Silva, D. L.; Modolo, L. V.; Alves, R. B.; de Resende, M. A.; Martins, C. V. B.; de Fátima, Â. Schiff bases: A short review of their antimicrobial activities. J. Adv. Res. 2011, 2, 1-8.
https://doi.org/10.1016/j.jare.2010.05.004
[17]. Login, C. C.; Bâldea, I.; Tiperciuc, B.; Benedec, D.; Vodnar, D. C.; Decea, N.; Suciu, Ş. A novel thiazolyl Schiff base: Antibacterial and antifungal effects and in vitro oxidative stress modulation on human endothelial cells. Oxid. Med. Cell. Longev. 2019, 2019, 1607903.
https://doi.org/10.1155/2019/1607903
[18]. Murugaiyan, M.; Mani, S. P.; Sithique, M. A. Zinc(ii) centered biologically active novel N,N,O donor tridentate water-soluble hydrazide-based O-carboxymethyl chitosan Schiff base metal complexes: synthesis and characterisation. New J Chem 2019, 43, 9540-9554.
https://doi.org/10.1039/C9NJ00670B
[19]. Gwaram, N. S.; Ali, H. M.; Abdulla, M. A.; Buckle, M. J. C.; Sukumaran, S. D.; Chung, L. Y.; Othman, R.; Alhadi, A. A.; Yehye, W. A.; Hadi, A. H. A.; Hassandarvish, P.; Khaledi, H.; Abdelwahab, S. I. Synthesis, characterization, X-ray crystallography, acetyl cholinesterase inhibition and antioxidant activities of some novel ketone derivatives of gallic hydrazide-derived Schiff bases. Molecules 2012, 17, 2408-2427.
https://doi.org/10.3390/molecules17032408
[20]. Devi, J.; Pachwania, S. Synthesis, characterization, in vitro antioxidant and antimicrobial activities of diorganotin(IV) complexes derived from hydrazide Schiff base ligands. Phosphorus Sulfur Silicon Relat. Elem. 2021, 196, 1049-1060.
https://doi.org/10.1080/10426507.2021.1960835
[21]. Li, L.; Li, Z.; Wang, K.; Liu, Y.; Li, Y.; Wang, Q. Synthesis and antiviral, insecticidal, and fungicidal activities of gossypol derivatives containing alkylimine, oxime or hydrazine moiety. Bioorg. Med. Chem. 2016, 24, 474-483.
https://doi.org/10.1016/j.bmc.2015.08.015
[22]. Liang, C.; Xia, J.; Lei, D.; Li, X.; Yao, Q.; Gao, J. Synthesis, in vitro and in vivo antitumor activity of symmetrical bis-Schiff base derivatives of isatin. Eur. J. Med. Chem. 2014, 74, 742-750.
https://doi.org/10.1016/j.ejmech.2013.04.040
[23]. Alafeefy, A. M.; Bakht, M. A.; Ganaie, M. A.; Ansarie, M. N.; El-Sayed, N. N.; Awaad, A. S. Synthesis, analgesic, anti-inflammatory and anti-ulcerogenic activities of certain novel Schiff's bases as fenamate isosteres. Bioorg. Med. Chem. Lett. 2015, 25, 179-183.
https://doi.org/10.1016/j.bmcl.2014.11.088
[24]. Abood, H. S.; Ramadhan, U. H.; Hamza, H. Synthesis and Anti-Inflammatory Activity Study of Schiff Bases Complexes. Biochem. Cell. Arch. 2020, 20, 5627-5631. https://www.researchgate.net/publication/346728834_synthesis_and_anti-inflammatory_activity_study_of_schiff_bases_complexes (accessed April 10, 2022).
[25]. Mukherjee, S.; Pal, C. K.; Kotakonda, M.; Joshi, M.; Shit, M.; Ghosh, P.; Choudhury, A. R.; Biswas, B. Solvent induced distortion in a square planar copper(II) complex containing an azo-functionalized Schiff base: Synthesis, crystal structure, in-vitro fungicidal and anti-proliferative, and catecholase activity. J. Mol. Struct. 2021, 1245, 131057.
https://doi.org/10.1016/j.molstruc.2021.131057
[26]. Dey, D.; Kaur, G.; Patra, M.; Choudhury, A. R.; Kole, N.; Biswas, B. A perfectly linear trinuclear zinc-Schiff base complex: Synthesis, luminescence property and photocatalytic activity of zinc oxide nanoparticle. Inorganica Chim. Acta 2014, 421, 335-341.
https://doi.org/10.1016/j.ica.2014.06.014
[27]. Gupta, K. C.; Sutar, A. K. Catalytic activities of Schiff base transition metal complexes. Coord. Chem. Rev. 2008, 252, 1420-1450.
https://doi.org/10.1016/j.ccr.2007.09.005
[28]. Assey, G. E.; Mgohamwende, R. A review of Titanium, Vanadium and Chromium transition metal Schiff base complexes with biological and catalytic activities. Pharm. Pharmacol. Int. J. 2020, 8, 136-146.
https://doi.org/10.15406/ppij.2020.08.00289
[29]. Bermejo, M. R.; Carballido, R.; Fernández-García, M. I.; González-Noya, A. M.; González-Riopedre, G.; Maneiro, M.; Rodríguez-Silva, L. Synthesis, characterization, and catalytic studies of Mn(III)-Schiff base-dicyanamide complexes: Checking the rhombicity effect in peroxidase studies. J. Chem. 2017, 2017, 1-10.
https://doi.org/10.1155/2017/5465890
[30]. Kumar Mudi, P.; Das, A.; Mahata, N.; Biswas, B. Head-to-Tail interlocking aromatic rings of a hydrazine functionalized Schiff base for the development of Nano-aggregates with blue emission: Structural and spectroscopic characteristics. J. Mol. Liq. 2021, 340, 117193.
https://doi.org/10.1016/j.molliq.2021.117193
[31]. Afzal, H. R.; Khan, N. U. H.; Sultana, K.; Mobashar, A.; Lareb, A.; Khan, A.; Gull, A.; Afzaal, H.; Khan, M. T.; Rizwan, M.; Imran, M. Schiff bases of pioglitazone provide better antidiabetic and potent antioxidant effect in a streptozotocin-nicotinamide-induced diabetic rodent model. ACS Omega 2021, 6, 4470-4479.
https://doi.org/10.1021/acsomega.0c06064
[32]. Szklarzewicz, J.; Jurowska, A.; Hodorowicz, M.; Kazek, G.; Mordyl, B.; Menaszek, E.; Sapa, J. Characterization and antidiabetic activity of salicylhydrazone Schiff base vanadium(IV) and (V) complexes. Transit. Met. Chem. 2021, 46, 201-217.
https://doi.org/10.1007/s11243-020-00437-1
[33]. CrystalClear 2.0, Rigaku Corporation: Tokyo, Japan.
[34]. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339-341.
https://doi.org/10.1107/S0021889808042726
[35]. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. A 2008, 64, 112-122.
https://doi.org/10.1107/S0108767307043930
[36]. Spackman, M. A.; Jayatilaka, D. Hirshfeld surface analysis. CrystEngComm 2009, 11, 19-32.
https://doi.org/10.1039/B818330A
[37]. McKinnon, J. J.; Jayatilaka, D.; Spackman, M. A. Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces. Chem. Commun. (Camb.) 2007, 3814-3816.
https://doi.org/10.1039/b704980c
[38]. Mackenzie, C. F.; Spackman, P. R.; Jayatilaka, D.; Spackman, M. A. CrystalExplorer model energies and energy frameworks: extension to metal coordination compounds, organic salts, solvates and open-shell systems. IUCrJ 2017, 4, 575-587.
https://doi.org/10.1107/S205225251700848X
[39]. Sahu, R.; Kundu, P.; Sethi, A. In vitro antioxidant activity and enzyme inhibition properties of wheat whole grain, bran and flour defatted with hexane and supercritical fluid extraction. Lebenson. Wiss. Technol. 2021, 146, 111376.
https://doi.org/10.1016/j.lwt.2021.111376
[40]. Roberts, J. D.; Caserio, M. C. Basic principles of organic chemistry; 2nd ed.; Benjamin-Cummings Publishing Co., Subs. of Addison Wesley Longman: Reading, PA, 1977.
[41]. Zugenmaier, P. Review of crystalline structures of some selected homologous series of rod-like molecules capable of forming liquid crystalline phases. Int. J. Mol. Sci. 2011, 12, 7360-7400.
https://doi.org/10.3390/ijms12117360
[42]. Saeed, S.; Rashid, N.; Mohamed, S. K. Synthesis and X-ray crystallography of N,N'-di(2-hydroxybenzylidene)hydrazine. Eur. J. Chem. 2017, 8, 15-17.
https://doi.org/10.5155/eurjchem.8.1.15-17.1521
[43]. Hanefeld, M. Cardiovascular benefits and safety profile of acarbose therapy in prediabetes and established type 2 diabetes. Cardiovasc. Diabetol. 2007, 6, 20.
https://doi.org/10.1186/1475-2840-6-20
[44]. Rosak, C.; Mertes, G. Critical evaluation of the role of acarbose in the treatment of diabetes: patient considerations. Diabetes Metab. Syndr. Obes. 2012, 5, 357-367.
https://doi.org/10.2147/DMSO.S28340
[45]. DiNicolantonio, J. J.; Bhutani, J.; O'Keefe, J. H. Acarbose: safe and effective for lowering postprandial hyperglycaemia and improving cardiovascular outcomes. Open Heart 2015, 2, e000327.
https://doi.org/10.1136/openhrt-2015-000327
Supporting information
The Supplementary Material for this article can be found online at: Supplementary files
How to cite
The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item
DOI Link: https://doi.org/10.5155/eurjchem.13.2.234-240.2265

















European Journal of Chemistry 2022, 13(2), 234-240 | doi: https://doi.org/10.5155/eurjchem.13.2.234-240.2265 | Get rights and content
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Authors

This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at http://www.eurjchem.com/index.php/eurjchem/pages/view/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (http://www.eurjchem.com/index.php/eurjchem/pages/view/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).
© Copyright 2010 - 2023 • Atlanta Publishing House LLC • All Right Reserved.
The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.
Copyright 2010-2023 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.