European Journal of Chemistry

Orange to red emissive aldehyde substituted donor-π-acceptor phenothiazine derivatives: Optoelectronic, DFT and thermal studies

Crossmark


Main Article Content

Shivaraj Mantur
Mallikarjun Kalagouda Patil
Afra Quasar Abdul Rasheed Nadaf
Mahesh Sadashivappa Najare
Mohammed Yaseen
Aravind Raviraj Nesaragi
Sanjeev Ramchandra Inamdar
Imtiyaz Ahmed Khazi
Ravindra Ramappa Kamble

Abstract

A new class of probes was synthesized using a simple and efficient synthetic protocol. These compounds (PTZ-6(a-e)) have the phenothiazine (PTZ) moiety as the electron donor (D) and substituted aldehydes along with the acrylonitrile group, which acts as the electron acceptor (A), thus making D-π-A push-pull system. The structures of the newly synthesized series of small organic target molecules PTZ-6(a-e) were investigated and confirmed by spectros-copic techniques. The optical/solvatochromic properties were studied in detail by UV-vis absorption and fluorescence spectroscopy, because the molecules have shown good solubility in organic solvents. The density functional theory (DFT) model with the CAM-B3LYP function is utilized to study the photophysical properties of the probes, as these probes exhibited orange-to-red emission. Optical band gap values ranged from 2.32 to 2.50 eV, and these probes exhibited good thermal stability with a melting temperature of 136 to 198 °C and a T5d temperature range from 335 to 354 °C. The cyclic voltammetry study confirms that the Eoxonset values of the target compounds are 0.80 eV. The quantum yields (Φ) of the probes are measured experimentally in ethanol and the Stokes shifts are observed to be in the range of 4846-9430 cm-1. The results displayed that novel (D-A-D) chromophores could play an important role in organic optoelectronics.


icon graph This Abstract was viewed 536 times | icon graph Article PDF downloaded 135 times

How to Cite
(1)
Mantur, S.; Patil, M. K.; Nadaf, A. Q. A. R.; Najare, M. S.; Yaseen, M.; Nesaragi, A. R.; Inamdar, S. R.; Khazi, I. A.; Kamble, R. R. Orange to Red Emissive Aldehyde Substituted Donor-π-Acceptor Phenothiazine Derivatives: Optoelectronic, DFT and Thermal Studies. Eur. J. Chem. 2023, 14, 16-29.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Konidena, R. K.; Thomas, K. R. J.; Kumar, S.; Wang, Y.-C.; Li, C.-J.; Jou, J.-H. Phenothiazine decorated carbazoles: effect of substitution pattern on the optical and electroluminescent characteristics. J. Org. Chem. 2015, 80, 5812-5823.
https://doi.org/10.1021/acs.joc.5b00787

[2]. Liu, Y.; Li, C.; Ren, Z.; Yan, S.; Bryce, M. R. All-organic thermally activated delayed fluorescence materials for organic light-emitting diodes. Nat. Rev. Mater. 2018, 3, 18020.
https://doi.org/10.1038/natrevmats.2018.20

[3]. Zhang, Z.; Zhang, Z.; Chen, R.; Jia, J.; Han, C.; Zheng, C.; Xu, H.; Yu, D.; Zhao, Y.; Yan, P.; Liu, S.; Huang, W. Modulating the optoelectronic properties of large, conjugated, high-energy gap, quaternary phosphine oxide hosts: impact of the triplet-excited-state location. Chemistry 2013, 19, 9549-9561.
https://doi.org/10.1002/chem.201300466

[4]. Sun, X.; Liu, Y.; Xu, X.; Yang, C.; Yu, G.; Chen, S.; Zhao, Z.; Qiu, W.; Li, Y.; Zhu, D. Novel electroactive and photoactive molecular materials based on conjugated donor-acceptor structures for optoelectronic device applications. J. Phys. Chem. B 2005, 109, 10786-10792.
https://doi.org/10.1021/jp0509515

[5]. Wu, T.-Y.; Tsao, M.-H.; Chen, F.-L.; Su, S.-G.; Chang, C.-W.; Wang, H.-P.; Lin, Y.-C.; Ou-Yang, W.-C.; Sun, I.-W. Synthesis and characterization of organic dyes containing various donors and acceptors. Int. J. Mol. Sci. 2010, 11, 329-353.
https://doi.org/10.3390/ijms11010329

[6]. Jenekhe, S. A.; Lu, L.; Alam, M. M. New conjugated polymers with Donor−Acceptor architectures: Synthesis and photophysics of Carbazole−Quinoline and Phenothiazine−Quinoline copolymers and oligomers exhibiting large intramolecular charge transfer. Macromolecules 2001, 34, 7315-7324.
https://doi.org/10.1021/ma0100448

[7]. Deshapande, N.; Pujar, G. H.; Sunagar, M. G.; Gaonkar, S.; Belavagi, N. S.; Inamdar, S. R.; Bathula, C.; Khazi, I. A. M. Synthesis and opto-electronic exploration of highly conjugated 1,3,4-oxadiazole containing donor-π-acceptor chromophores. ChemistrySelect 2017, 2, 1793-1801.
https://doi.org/10.1002/slct.201700048

[8]. Yoon, K. R.; Ko, S.-O.; Lee, S. M.; Lee, H. Synthesis and characterization of carbazole derived nonlinear optical dyes. Dyes Pigm. 2007, 75, 567-573.
https://doi.org/10.1016/j.dyepig.2006.07.004

[9]. An, Z.-F.; Chen, R.-F.; Yin, J.; Xie, G.-H.; Shi, H.-F.; Tsuboi, T.; Huang, W. Conjugated asymmetric donor-substituted 1,3,5-triazines: new host materials for blue phosphorescent organic light-emitting diodes. Chemistry 2011, 17, 10871-10878.
https://doi.org/10.1002/chem.201101118

[10]. Beaujuge, P. M.; Fréchet, J. M. J. Molecular design and ordering effects in π-functional materials for transistor and solar cell applications. J. Am. Chem. Soc. 2011, 133, 20009-20029.
https://doi.org/10.1021/ja2073643

[11]. Yuen, J. D.; Kumar, R.; Zakhidov, D.; Seifter, J.; Lim, B.; Heeger, A. J.; Wudl, F. Ambipolarity in benzobisthiadiazole-based donor-acceptor conjugated polymers. Adv. Mater. 2011, 23, 3780-3785.
https://doi.org/10.1002/adma.201101134

[12]. Belavagi, N. S.; Deshapande, N.; Pujar, G. H.; Wari, M. N.; Inamdar, S. R.; Khazi, I. A. M. Design, synthesis and optoelectronic properties of unsymmetrical oxadiazole based indene substituted derivatives as deep blue fluoroscent materials. J. Fluoresc. 2015, 25, 1323-1330.
https://doi.org/10.1007/s10895-015-1620-3

[13]. Levell, J. W.; Giardini, M. E.; Samuel, I. D. W. A hybrid organic semiconductor/silicon photodiode for efficient ultraviolet photodetection. Opt. Express 2010, 18, 3219-3225.
https://doi.org/10.1364/OE.18.003219

[14]. Stiff-Roberts, A. D.; Lantz, K. R.; Pate, R. Room-temperature, mid-infrared photodetection in colloidal quantum dot/conjugated polymer hybrid nanocomposites: a new approach to quantum dot infrared photodetectors. J. Phys. D Appl. Phys. 2009, 42, 234004.
https://doi.org/10.1088/0022-3727/42/23/234004

[15]. Hettiarachchi, S. U.; Prasai, B.; McCarley, R. L. Detection and cellular imaging of human cancer enzyme using a turn-on, wavelength-shiftable, self-immolative profluorophore. J. Am. Chem. Soc. 2014, 136, 7575-7578.
https://doi.org/10.1021/ja5030707

[16]. Shinar, J.; Shinar, R. Organic light-emitting devices (OLEDs) and OLED-based chemical and biological sensors: an overview. J. Phys. D Appl. Phys. 2008, 41, 133001.
https://doi.org/10.1088/0022-3727/41/13/133001

[17]. Tanaka, H.; Shizu, K.; Nakanotani, H.; Adachi, C. Dual intramolecular charge-transfer fluorescence derived from a phenothiazine-triphenyl-triazine derivative. J. Phys. Chem. C Nanomater. Interfaces 2014, 118, 15985-15994.
https://doi.org/10.1021/jp501017f

[18]. Lai, R. Y.; Kong, X.; Jenekhe, S. A.; Bard, A. J. Synthesis, cyclic voltammetric studies, and electrogenerated chemiluminescence of a new phenylquinoline-biphenothiazine donor-acceptor molecule. J. Am. Chem. Soc. 2003, 125, 12631-12639.
https://doi.org/10.1021/ja036600q

[19]. Sych, G.; Volyniuk, D.; Bezvikonnyi, O.; Lytvyn, R.; Grazulevicius, J. V. Dual interface exciplex emission of quinoline and carbazole derivatives for simplified nondoped white OLEDs. J. Phys. Chem. C Nanomater. Interfaces 2019, 123, 2386-2397.
https://doi.org/10.1021/acs.jpcc.8b09908

[20]. Seok, J. H.; Park, S. H.; El-Khouly, M. E.; Araki, Y.; Ito, O.; Kay, K.-Y. Photoinduced processes of newly synthesized bisferrocene- and bisfullerene-substituted tetrads with a triphenylamine central block. J. Organomet. Chem. 2009, 694, 1818-1825.
https://doi.org/10.1016/j.jorganchem.2009.01.011

[21]. El-Khouly, M. E.; Kim, J. H.; Kwak, M.; Choi, C. S.; Ito, O.; Kay, K.-Y. Photoinduced charge separation of the covalently linked fullerene-triphenylamine-fullerene triad. Effect of dual fullerenes on lifetimes of charge-separated states. Bull. Chem. Soc. Jpn. 2007, 80, 2465-2472.
https://doi.org/10.1246/bcsj.80.2465

[22]. Qiu, X.; Shi, J.; Xu, X.; Lu, Y.; Sun, Q.; Xue, S.; Yang, W. Tuning the optoelectronic properties of phenothiazine-based D-A-type emitters through changing acceptor pattern. Dyes Pigm. 2017, 147, 6-15.
https://doi.org/10.1016/j.dyepig.2017.07.064

[23]. Avhad, K. C.; Patil, D. S.; Chitrambalam, S.; Sreenath, M. C.; Joe, I. H.; Sekar, N. Extensive study of rhodanine-arylamine-based chromo-phores: Consolidated optical, DFT/TD-DFT and non-linear optical properties. ChemistrySelect 2019, 4, 211-221.
https://doi.org/10.1002/slct.201802813

[24]. Madrid-Úsuga, D.; Melo-Luna, C. A.; Insuasty, A.; Ortiz, A.; Reina, J. H. Optical and electronic properties of molecular systems derived from rhodanine. J. Phys. Chem. A 2018, 122, 8469-8476.
https://doi.org/10.1021/acs.jpca.8b08265

[25]. Lee, Y.; Woo, S.-J.; Kim, J.-J.; Hong, J.-I. Blue thermally activated delayed fluorescence emitter using modulated triazines as electron acceptors. Dyes Pigm. 2020, 172, 107864.
https://doi.org/10.1016/j.dyepig.2019.107864

[26]. Youn Lee, S.; Yasuda, T.; Nomura, H.; Adachi, C. High-efficiency organic light-emitting diodes utilizing thermally activated delayed fluorescence from triazine-based donor-acceptor hybrid molecules. Appl. Phys. Lett. 2012, 101, 093306.
https://doi.org/10.1063/1.4749285

[27]. Cooper, M. W.; Zhang, X.; Zhang, Y.; Jeon, S. O.; Lee, H.; Kim, S.; Fuentes-Hernandez, C.; Barlow, S.; Kippelen, B.; Marder, S. R. Effect of the number and substitution pattern of carbazole donors on the singlet and triplet state energies in a series of carbazole-oxadiazole derivatives exhibiting thermally activated delayed fluorescence. Chem. Mater. 2018, 30, 6389-6399.
https://doi.org/10.1021/acs.chemmater.8b02632

[28]. Huang, Z.-S.; Meier, H.; Cao, D. Phenothiazine-based dyes for efficient dye-sensitized solar cells. J. Mater. Chem. C Mater. Opt. Electron. Devices 2016, 4, 2404-2426.
https://doi.org/10.1039/C5TC04418A

[29]. Huh, J. W.; Kim, Y. M.; Park, Y. W.; Choi, J. H.; Lee, J. W.; Lee, J. W.; Yang, J. W.; Ju, S. H.; Paek, K. K.; Ju, B. K. Characteristics of organic light-emitting diodes with conducting polymer anodes on plastic substrates. J. Appl. Phys. 2008, 103, 044502.
https://doi.org/10.1063/1.2840053

[30]. Karzazi, Y. Organic Light Emitting Diodes: Devices and applications. J. Mater. Environ. Sci. 2014, 5, 1-12.

[31]. Zhou, J.; He, B.; Xiang, J.; Chen, B.; Lin, G.; Luo, W.; Lou, X.; Chen, S.; Zhao, Z.; Tang, B. Z. Tuning the AIE activities and emission wavelengths of tetraphenylethene-containing luminogens. ChemistrySelect 2016, 1, 812-818.
https://doi.org/10.1002/slct.201600008

[32]. Bureš, F. Fundamental aspects of property tuning in push-pull molecules. RSC Adv. 2014, 4, 58826-58851.
https://doi.org/10.1039/C4RA11264D

[33]. Ramakrishna, G.; Goodson, T., 3rd Excited-state deactivation of branched two-photon absorbing chromophores: a femtosecond transient absorption investigation. J. Phys. Chem. A 2007, 111, 993-1000.
https://doi.org/10.1021/jp064004n

[34]. Carlotti, B.; Benassi, E.; Spalletti, A.; Fortuna, C. G.; Elisei, F.; Barone, V. Photoinduced symmetry-breaking intramolecular charge transfer in a quadrupolar pyridinium derivative. Phys. Chem. Chem. Phys. 2014, 16, 13984-13994.
https://doi.org/10.1039/C4CP00631C

[35]. Zaier, R.; Hajaji, S.; Kozaki, M.; Ayachi, S. DFT and TD-DFT studies on the electronic and optical properties of linear π-conjugated cyclopentadithiophene (CPDT) dimer for efficient blue OLED. Opt. Mater. (Amst.) 2019, 91, 108-114.,
https://doi.org/10.1016/j.optmat.2019.03.013

[36]. Mechanochromic fluorescent materials: Phenomena, materials and applications; Xu, J.; Chi, Z., Eds.; Royal Society of Chemistry: Cambridge, England, 2014.

[37]. Ciardelli, F.; Ruggeri, G.; Pucci, A. Dye-containing polymers: methods for preparation of mechanochromic materials. Chem. Soc. Rev. 2013, 42, 857-870.
https://doi.org/10.1039/C2CS35414D

[38]. Ma, C.; Zhang, X.; Yang, Y.; Ma, Z.; Yang, L.; Wu, Y.; Liu, H.; Jia, X.; Wei, Y. Halogen effect on mechanofluorochromic properties of alkyl phenothiazinyl phenylacrylonitrile derivatives. Dyes Pigm. 2016, 129, 141-148.
https://doi.org/10.1016/j.dyepig.2016.02.028

[39]. Hua, Y.; Chang, S.; Huang, D.; Zhou, X.; Zhu, X.; Zhao, J.; Chen, T.; Wong, W.-Y.; Wong, W.-K. Significant improvement of dye-sensitized solar cell performance using simple phenothiazine-based dyes. Chem. Mater. 2013, 25, 2146-2153.
https://doi.org/10.1021/cm400800h

[40]. Data, P.; Takeda, Y. Recent advancements in and the future of organic emitters: TADF- and RTP-active multifunctional organic materials. Chem. Asian J. 2019, 14, 1613-1636.
https://doi.org/10.1002/asia.201801791

[41]. Huang, L.; Wen, X.; Liu, J.; Chen, M.; Ma, Z.; Jia, X. An AIE molecule featuring changeable triplet emission between phosphorescence and delayed fluorescence by an external force. Mater. Chem. Front. 2019, 3, 2151-2156.
https://doi.org/10.1039/C9QM00509A

[42]. Zhao, Q.; Sun, J. Z. Red and near infrared emission materials with AIE characteristics. J. Mater. Chem. C Mater. Opt. Electron. Devices 2016, 4, 10588-10609.
https://doi.org/10.1039/C6TC03359H

[43]. Mantur, S.; Patil, M. K.; Nadaf, A. A.; Najare, M. S.; Yaseen, M.; Inamdar, S. R.; Khazi, I. A. M. Synthesis, characterization and photophysical properties of π-conjugated novel phenothiazine substituted acrylonitrile D-A derivatives: Orange to red emission. Chem. Data Coll. 2020, 30, 100543.
https://doi.org/10.1016/j.cdc.2020.100543

[44]. Park, S. S.; Won, Y. S.; Choi, Y. C.; Kim, J. H. Molecular design of organic dyes with double electron acceptor for dye-sensitized solar cell. Energy Fuels 2009, 23, 3732-3736.
https://doi.org/10.1021/ef900207y

[45]. Xu, Y.; Wang, N.-Y.; Song, X.-J.; Lei, Q.; Ye, T.-H.; You, X.-Y.; Zuo, W.-Q.; Xia, Y.; Zhang, L.-D.; Yu, L.-T. Discovery of novel N-(5-(tert-butyl)isoxazol-3-yl)-N'-phenylurea analogs as potent FLT3 inhibitors and evaluation of their activity against acute myeloid leukemia in vitro and in vivo. Bioorg. Med. Chem. 2015, 23, 4333-4343.
https://doi.org/10.1016/j.bmc.2015.06.033

[46]. Konidena, R. K.; Justin Thomas, K. R.; Singh, M.; Jou, J.-H. Thienylphenothiazine integrated pyrenes: an account on the influence of substitution patterns on their optical and electroluminescence properties. J. Mater. Chem. C Mater. Opt. Electron. Devices 2016, 4, 4246-4258.
https://doi.org/10.1039/C6TC00354K

[47]. Ramachandran, E.; Dhamodharan, R. Rational design of phenothiazine (PTz) and ethylenedioxythiophene (EDOT) based donor-acceptor compounds with a molecular aggregation breaker for solid state emission in red and NIR regions. J. Mater. Chem. C Mater. Opt. Electron. Devices 2015, 3, 8642-8648.
https://doi.org/10.1039/C5TC01423A

[48]. Shanmugasundaram, K.; Subeesh, M. S.; Sunesh, C. D.; Chitumalla, R. K.; Jang, J.; Choe, Y. Green electroluminescence from charged phenothiazine derivative. J. Phys. Chem. C Nanomater. Interfaces 2016, 120, 20247-20253.
https://doi.org/10.1021/acs.jpcc.6b04764

[49]. Rhys Williams, A. T.; Winfield, S. A.; Miller, J. N. Relative fluorescence quantum yields using a computer-controlled luminescence spectrometer. Analyst 1983, 108, 1067-1071.
https://doi.org/10.1039/an9830801067

[50]. Xu, H.; Chen, R.; Sun, Q.; Lai, W.; Su, Q.; Huang, W.; Liu, X. Recent progress in metal-organic complexes for optoelectronic applications. Chem. Soc. Rev. 2014, 43, 3259-3302.
https://doi.org/10.1039/C3CS60449G

[51]. Nedumpara, R. J.; Thomas, K. J.; Jayasree, V. K.; Girijavallabhan, C. P.; Nampoori, V. P. N.; Radhakrishnan, P. Study of solvent effect in laser emission from Coumarin 540 dye solution. Appl. Opt. 2007, 46, 4786-4792.
https://doi.org/10.1364/AO.46.004786

[52]. Drexhage, K. H. Fluorescence efficiency of laser dyes. J. Res. Natl. Bur. Stand. A Phys. Chem. 1976, 80A, 421.
https://doi.org/10.6028/jres.080A.044

[53]. Rodrigues, A. C. B.; Pina, J.; Dong, W.; Forster, M.; Scherf, U.; Seixas de Melo, J. S. Aggregation-induced emission in phenothiazine-TPE and −TPAN polymers. Macromolecules 2018, 51, 8501-8512.
https://doi.org/10.1021/acs.macromol.8b01758

[54]. Rurack, K.; Spieles, M. Fluorescence quantum yields of a series of red and near-infrared dyes emitting at 600-1000 nm. Anal. Chem. 2011, 83, 1232-1242.
https://doi.org/10.1021/ac101329h

[55]. Hu, J.-Y.; Era, M.; Elsegood, M. R. J.; Yamato, T. Synthesis and photophysical properties of pyrene-based light-emitting monomers: Highly pure-blue-fluorescent, cruciform-shaped architectures. European J. Org. Chem. 2010, 2010, 72-79.
https://doi.org/10.1002/ejoc.200900806

[56]. Jędrzejewska, B.; Ośmiałowski, B.; Zaleśny, R. Application of spectroscopic and theoretical methods in the studies of photoisomerization and photophysical properties of the push-pull styryl-benzimidazole dyes. Photochem. Photobiol. Sci. 2016, 15, 117-128.
https://doi.org/10.1039/c5pp00361j

[57]. Zahn, D. R. T.; Gavrila, G. N.; Gorgoi, M. The transport gap of organic semiconductors studied using the combination of direct and inverse photoemission. Chem. Phys. 2006, 325, 99-112.
https://doi.org/10.1016/j.chemphys.2006.02.003

[58]. Lee, H.; Kim, B.; Kim, S.; Kim, J.; Lee, J.; Shin, H.; Lee, J.-H.; Park, J. Synthesis and electroluminescence properties of highly efficient dual core chromophores with side groups for blue emission. J. Mater. Chem. C Mater. Opt. Electron. Devices 2014, 2, 4737-4747.
https://doi.org/10.1039/C4TC00075G

[59]. Reichardt, C. Solvatochromic dyes as solvent polarity indicators. Chem. Rev. 1994, 94, 2319-2358.
https://doi.org/10.1021/cr00032a005

[60]. Al-Zahrani, F. A. M. Synthesis, modelling, and solvatochromic properties of a phenothiazine derivative. Luminescence 2020, 35, 738-747.
https://doi.org/10.1002/bio.3779

[61]. Gopal, V. R.; Reddy, A. M.; Rao, V. J. Wavelength dependent trans to Cis and quantum chain isomerizations of anthrylethylene derivatives. J. Org. Chem. 1995, 60, 7966-7973.
https://doi.org/10.1021/jo00129a043

[62]. Slodek, A.; Zych, D.; Maroń, A.; Gawecki, R.; Mrozek-Wilczkiewicz, A.; Malarz, K.; Musioł, R. Phenothiazine derivatives - synthesis, characterization, and theoretical studies with an emphasis on the solvatochromic properties. J. Mol. Liq. 2019, 285, 515-525.
https://doi.org/10.1016/j.molliq.2019.04.102

[63]. Najare, M. S.; Patil, M. K.; Mantur, S.; Nadaf, A. A.; Inamdar, S. R.; Khazi, I. A. M. Highly conjugated D-π-A-π-D form of novel benzo[b]thiophene substituted 1,3,4‑oxadiazole derivatives; Thermal, optical properties, solvatochromism and DFT studies. J. Mol. Liq. 2018, 272, 507-519.
https://doi.org/10.1016/j.molliq.2018.09.094

[64]. Rauf, M. A.; Hisaindee, S. Studies on solvatochromic behavior of dyes using spectral techniques. J. Mol. Struct. 2013, 1042, 45-56.
https://doi.org/10.1016/j.molstruc.2013.03.050

[65]. Rout, Y.; Montanari, C.; Pasciucco, E.; Misra, R.; Carlotti, B. Tuning the fluorescence and the intramolecular charge transfer of phenothiazine dipolar and quadrupolar derivatives by oxygen functionalization. J. Am. Chem. Soc. 2021, 143, 9933-9943.
https://doi.org/10.1021/jacs.1c04173

[66]. Laws, W. R.; Brand, L. Analysis of two-state excited-state reactions. The fluorescence decay of 2-naphthol. J. Phys. Chem. 1979, 83, 795-802.
https://doi.org/10.1021/j100470a007

[67]. Davenport, L.; Knutson, J. R.; Brand, L. Excited-state proton transfer of equilenin and dihydroequilenin: interaction with bilayer vesicles. Biochemistry 1986, 25, 1186-1195.
https://doi.org/10.1021/bi00353a037

[68]. El-Kemary, M.; Rettig, W. Multiple emission in coumarins with heterocyclic substituents. Phys. Chem. Chem. Phys. 2003, 5, 5221-5228.
https://doi.org/10.1039/b308712c

[69]. Malval, J. P.; Lapouyade, R.; Léger, J.-M.; Jarry, C. Tripodal ligand incorporating dual fluorescent ionophore: a coordinative control of photoinduced electron transfer. Photochem. Photobiol. Sci. 2003, 2, 259-266.
https://doi.org/10.1039/b210361c

[70]. Demchenko, A. P. The problem of self-calibration of fluorescence signal in microscale sensor systems. Lab Chip 2005, 5, 1210-1223.
https://doi.org/10.1039/b507447a

[71]. Najare, M. S.; Patil, M. K.; Tilakraj, T. S.; Yaseen, M.; Nadaf, A. A.; Mantur, S.; Inamdar, S. R.; Khazi, I. A. M. Photophysical and electrochemical properties of highly π-conjugated bipolar carbazole-1,3,4-oxadiazole-based D-π-A type of efficient deep blue fluorescent dye. J. Fluoresc. 2021, 31, 1645-1664.
https://doi.org/10.1007/s10895-021-02778-1

[72]. Huo, H. Asymmetric catalysis with chiral-at-metal complexes: From non-photochemical applications to photoredox catalysis, Presented to the Faculties of Philipps Universität Marburg in Partial Fulfillment: Marburg/Lahn, 2016.

[73]. Bathula, C.; Badgujar, S.; Belavagi, N. S.; Lee, S. K.; Kang, Y.; Khazi, I. A. M. Synthesis, characterization and optoelectronic properties of benzodithiophene based copolymers for application in solar cells. J. Fluoresc. 2016, 26, 371-376.
https://doi.org/10.1007/s10895-015-1724-9

[74]. Chang, D. W.; Ko, S.-J.; Kim, J. Y.; Dai, L.; Baek, J.-B. Multifunctional quinoxaline containing small molecules with multiple electron-donating moieties: Solvatochromic and optoelectronic properties. Synth. Met. 2012, 162, 1169-1176.
https://doi.org/10.1016/j.synthmet.2012.04.016

[75]. Deshapande, N.; Belavagi, N. S.; Sunagar, M. G.; Gaonkar, S.; Pujar, G. H.; Wari, M. N.; Inamdar, S. R.; Khazi, I. A. M. Synthesis, characterization and optoelectronic investigations of bithiophene substituted 1,3,4-oxadiazole derivatives as green fluorescent materials. RSC Adv. 2015, 5, 86685-86696.
https://doi.org/10.1039/C5RA14550C

[76]. Mantur, S.; Patil, M. K.; Najare, M. S.; Nadaf, A. A.; Yaseen, M.; Gaonkar, S.; Inamdar, S. R.; Khazi, I. A. M.; Kamble, R. R. Design and synthesis of D‐π‐A form of p ‐nitrophenylacrylonitrile substituted triphenylamine chromophores; Photophysical, electrochemical properties, DFT and thermal studies. ChemistrySelect 2021, 6, 12811-12819.
https://doi.org/10.1002/slct.202102873

[77]. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian, Inc. , Wallingford CT, 2004.

[78]. Li, D.-M.; Zhou, H.-P.; Pu, J.-Q.; Feng, X.-J.; Wu, J.-Y.; Tian, Y.-P.; Yu, X.-Q.; Tao, X.-T.; Jiang, M.-H. Synthesis, luminescence and electrochemical properties of two phenothiazine derivatives. Chin. J. Chem. 2005, 23, 1483-1489.
https://doi.org/10.1002/cjoc.200591483

[79]. Jin, R.; Tang, S. Theoretical study on optical and electronic properties of bipolar molecules with 1,8-naphthalimide and triphenylamine moieties as organic light-emitting materials. J. Mol. Graph. Model. 2013, 42, 120-128.
https://doi.org/10.1016/j.jmgm.2013.04.001

[80]. Shen, Y.-F.; Li, M.; Zhao, W.-L.; Wang, Y.-F.; Lu, H.-Y.; Chen, C.-F. Quinoline-based TADF emitters exhibiting aggregation-induced emission for efficient non-doped organic light-emitting diodes. Mater. Chem. Front. 2021, 5, 834-842.
https://doi.org/10.1039/D0QM00628A

Most read articles by the same author(s)

Most read articles by the same author(s)

TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).