European Journal of Chemistry

Comparative chemical composition and pesticidal evaluation of Acorus calamus accessions collected from different geographical locations

Crossmark


Main Article Content

Tisha Joshi
Kirti Nagarkoti
Navadha Joshi
Avneesh Rawat
Om Prakash
Ravendra Kumar
Ravi Mohan Srivastava
Satya Kumar
Shilpi Rawat
Dharmendra Singh Rawat

Abstract

The objectives of the present study were to investigate the phytochemical composition of essential oils (EO) from rhizomes of Acorus calamus collected from Jorhat, Assam; Munsyari and Pantnagar, Uttarakhand, India.  EOs were studied for different pesticidal activities viz; nematicidal, insecticidal, and herbicidal activity. To study the synergistic effect of EOs on pesticidal activity, four combinations of EOs were prepared. Phenylpropanoids with β-asarone as the main compound were identified in all collections with varying percentages. Its contribution was found to be 85.8% in Munsyari EOs followed by 74.3% in Pantnagar and 62.6% in Assam collections. All EOs exhibited dose-dependent in vitro nematicidal activity against Meloidogyne incognita in terms of immobility and inhibition of egg hatching. The activity was observed as maximum in the EO combination of all three collections (1:1:1) whereas minimum in the Assam collections. In insecticidal activity against Lipaphis erysimi and Selepa celtis, maximum mortality was observed in Munsyari collections. The oils were assessed for sprout inhibition activity in terms of seed germination inhibition, coleoptile growth of the shoot and root against Raphanus raphanistrum. Maximum seed germination inhibition, % shoot, and root growth inhibition were found in all collections EO combinations. To predict the possible mode of action and the structure-activity relationship between major compounds of EOs and biological activities, in silico molecular docking and ADME/Tox studies were performed. The docking results revealed the mode of action of proteins of insects, nematodes, and weeds and were found in support of in vitro experiments. The study may be helpful for the development of herbal-based pesticides after proper clinical trials.


icon graph This Abstract was viewed 1126 times | icon graph Article PDF downloaded 349 times

How to Cite
(1)
Joshi, T.; Nagarkoti, K.; Joshi, N.; Rawat, A.; Prakash, O.; Kumar, R.; Srivastava, R. M.; Kumar, S.; Rawat, S.; Rawat, D. S. Comparative Chemical Composition and Pesticidal Evaluation of Acorus Calamus Accessions Collected from Different Geographical Locations. Eur. J. Chem. 2023, 14, 129-143.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Agboola, A. R.; Okonkwo, C. O.; Agwupuye, E. I.; Mbeh, G. Biopesticides and conventional pesticides: Comparative review of mechanism of action and future perspectives. AROC Agric. 2022, 1, 14-32.
https://doi.org/10.53858/arocagr01011432

[2]. Chawla, M.; Kaushik, R. D.; Malik, M. K.; Pundir, V.; Singh, J.; Rehmaan, H. Development and optimization of RofA-PAMAM dendrimer complex materials for sustained drug delivery. Mater. Today Commun. 2022, 33, 104881.
https://doi.org/10.1016/j.mtcomm.2022.104881

[3]. Ngegba, P. M.; Cui, G.; Khalid, M. Z.; Zhong, G. Use of botanical pesticides in agriculture as an alternative to synthetic pesticides. Agriculture 2022, 12, 600.
https://doi.org/10.3390/agriculture12050600

[4]. Kumar Malik, M.; Kumar, T.; Kumar, V.; Singh, J.; Kumar Singh, R.; Saini, K. Sustainable, highly foldable, eco-friendly films from Mandua starch derivative. Sustain. Energy Technol. Assessments 2022, 53, 102398.
https://doi.org/10.1016/j.seta.2022.102398

[5]. Malik, M. K.; Bhatt, P.; Singh, J.; Kaushik, R. D.; Sharma, G.; Kumar, V. Preclinical safety assessment of chemically cross-linked modified mandua starch: Acute and sub-acute oral toxicity studies in Swiss albino mice. ACS Omega 2022, 7, 35506-35514.
https://doi.org/10.1021/acsomega.2c01309

[6]. Nagarkoti, K.; Kanyal, J.; Prakash, O.; Kumar, R.; Rawat, D. S.; Pant, A. K. AjugaL.: A systematic review on chemical composition, phytopharmacological and biological potential. Curr. Bioact. Compd. 2021, 17, e010621189843.
https://doi.org/10.2174/1573407216999210101230234

[7]. Acheuk, F.; Basiouni, S.; Shehata, A. A.; Dick, K.; Hajri, H.; Lasram, S.; Yilmaz, M.; Emekci, M.; Tsiamis, G.; Spona-Friedl, M.; May-Simera, H.; Eisenreich, W.; Ntougias, S. Status and prospects of botanical biopesticides in Europe and Mediterranean countries. Biomolecules 2022, 12, 311.
https://doi.org/10.3390/biom12020311

[8]. Rana, S.; Dixit, S. Screening of phytochemicals in citrus limonum peel extract to evaluate its antimicrobial potential. International Journal of Natural Products Research 2017, 7, 7-16.

[9]. Chugh, C. A.; Bharti, D. Chemical characterization of antifungal constituents ofEmblica officinalis. Allelopathy Journal 2014, 34, 155-178.

[10]. Rana, S.; Dixit, S.; Mittal, A. In silico target identification and validation for antioxidant and anti-inflammatory activity of selective phytochemicals. Braz. Arch. Biol. Technol. 2019, 62, e19190048.
https://doi.org/10.1590/1678-4324-2019190048

[11]. Malik, M. K.; Bhatt, P.; Kumar, T.; Singh, J.; Kumar, V.; Faruk, A.; Fuloria, S.; Fuloria, N. K.; Subrimanyan, V.; Kumar, S. Significance of chemically derivatized starch as drug carrier in developing novel drug delivery devices. Nat. Prod. J. 2022, 12, e190822207708.
https://doi.org/10.2174/2210315512666220819112334

[12]. Malik, M. K.; Kumar, V.; Sharma, P. P.; Singh, J.; Fuloria, S.; Subrimanyan, V.; Fuloria, N. K.; Kumar, P. Improvement in digestion resistibility of mandua starch (Eleusine coracana) after cross-linking with epichlorohydrin. ACS Omega 2022, 7, 27334-27346.
https://doi.org/10.1021/acsomega.2c02327

[13]. Khwairakpam, A. D.; Damayenti, Y. D.; Deka, A.; Monisha, J.; Roy, N. K.; Padmavathi, G.; Kunnumakkara, A. B. Acorus calamus: a bio-reserve of medicinal values. J. Basic Clin. Physiol. Pharmacol. 2018, 29, 107-122.
https://doi.org/10.1515/jbcpp-2016-0132

[14]. Abdul Kareem, V. K.; Rajasekharan, P. E.; Ravish, B. S.; Mini, S.; Sane, A.; Vasantha Kumar, T. Analysis of genetic diversity in Acorus calamus populations in South and North East India using ISSR markers. Biochem. Syst. Ecol. 2012, 40, 156-161.
https://doi.org/10.1016/j.bse.2011.09.012

[15]. Singh, B. K.; Pillai, K. K.; Kohli, K.; Haque, S. E. Isoproterenol-induced cardiomyopathy in rats: influence of Acorus calamus Linn.: A. calamus attenuates cardiomyopathy: A. calamus Attenuates Cardiomyopathy. Cardiovasc. Toxicol. 2011, 11, 263-271.
https://doi.org/10.1007/s12012-011-9121-3

[16]. Raina, V. K.; Srivastava, S. K.; Syamasunder, K. V. Essential oil composition ofAcorus calamus L. from the lower region of the Himalayas. Flavour Fragr. J. 2003, 18, 18-20.
https://doi.org/10.1002/ffj.1136

[17]. Polish Pharmacopoeia. https://www.urpl.gov.pl/en/polish-pharmacopoeia (accessed January 1, 2023).

[18]. Adams, R. P. Identification of essential oil components by gas chromatography/mass spectrometry. Carol Stream: Allured publishing corporation; Allured Publishing Corporation, 2007.

[19]. Hussey, R. S.; Barker, K. R. comparison of methods of collecting inocula of Meloidogyne spp., including a new technique. Plant disease reporter 1973, 57, 1925-1928.

[20]. Eisenback, J. D. Diagnostic characters useful in the identification of the four most common species of root-knot nematodes (Meloidogyne spp.). In: Sasser JN, Carter CC (eds) An advanced treatise on Meloidogyne, vol I: biology and control; North Carolina State University Graphics, Raleigh, N.C.: USA, 1985.

[21]. Babaali, D.; Roeb, J.; Hammache, M.; Hallmann, J. Nematicidal potential of aqueous and ethanol extracts gained from Datura stramonium, D. innoxia and D. tatula on Meloidogyne incognita. J. Plant Dis. Prot. (2006) 2017, 124, 339-348.
https://doi.org/10.1007/s41348-017-0079-7

[22]. Zaidat, S. A. E.; Mouhouche, F.; Babaali, D.; Abdessemed, N.; De Cara, M.; Hammache, M. Nematicidal activity of aqueous and organic extracts of local plants against Meloidogyne incognita (Kofoid and White) Chitwood in Algeria under laboratory and greenhouse conditions. Egypt. J. Biol. Pest Contr. 2020, 30, 46.
https://doi.org/10.1186/s41938-020-00242-z

[23]. Yang, Y.-C.; Lee, S.-H.; Lee, W.-J.; Choi, D.-H.; Ahn, Y.-J. Ovicidal and adulticidal effects of Eugenia caryophyllata bud and leaf oil compounds on Pediculus capitis. J. Agric. Food Chem. 2003, 51, 4884-4888.
https://doi.org/10.1021/jf034225f

[24]. Gadad, H.; Naqvi, A. H.; Mittal, V.; Singh, J.; Das, S. Biology and Damage Pattern of Hairy Caterpillar Selepa celtis Moore (Lepidoptera: Nolidae) on Terminelia arjuna. Int. J. Curr. Microbiol. Appl. Sci. 2021, 10, 25-31.
https://doi.org/10.20546/ijcmas.2021.1001.004

[25]. Cole, R. A. Isolation of a chitin-binding lectin, with insecticidal activity in chemically-defined synthetic diets, from two wild brassica species with resistance to cabbage aphid Brevicoryne brassicae. Entomol. Exp. Appl. 1994, 72, 181-187.
https://doi.org/10.1111/j.1570-7458.1994.tb01816.x

[26]. Koorki, Z.; Shahidi-Noghabi, S.; Mahdian, K.; Pirmaoradi, M. Chemical composition and insecticidal properties of several plant essential oils on the melon aphid,Aphis gossypiiGlover (Hemiptera: Aphididae). J. Essent. Oil-Bear. Plants 2018, 21, 420-429.
https://doi.org/10.1080/0972060X.2018.1435308

[27]. Sahu, A.; Devkota, A. Allelopathic Effects of Aqueous Extract of Leaves of Mikania Micrantha H.B.K. on Seed Germination and Seedling Growht of Oryza Sativa L. and Raphanus Sativus L. Sci. World 2013, 11, 91-93.
https://doi.org/10.3126/sw.v11i11.8559

[28]. Abhishek Biswal, R.; Venkataraghavan, R.; Vivek, P.; Ivo Romauld, S. Molecular docking of various bioactive compounds from essential oil of Trachyaspermum ammi against the fungal enzyme Candidapepsin-1. J. Appl. Pharm. Sci. 2019, 9, 21-32.
https://doi.org/10.7324/JAPS.2019.90503

[29]. Kabdal, T.; Himani; Kumar, R.; Prakash, O.; Nagarkoti, K.; Rawat, D. S.; Srivastava, R. M.; Kumar, S.; Dubey, S. K. Seasonal variation in the essential oil composition and biological activities of Thymus linearis Benth. Collected from the Kumaun region of Uttarakhand, India. Biochem. Syst. Ecol. 2022, 103, 104449.
https://doi.org/10.1016/j.bse.2022.104449

[30]. Hu, Y.; Liu, X.; Wu, X.; Zhang, Z.; Wu, D.; Chen, C.; Su, W.; Zhang, L.; Li, J.; Wang, H.-M. D. Several natural phytochemicals from Chinese traditional fermented food-pickled Raphanus sativus L.: Purification and characterization. Food Chem. X 2022, 15, 100390.
https://doi.org/10.1016/j.fochx.2022.100390

[31]. Misra, A.; Kishore, D.; Verma, V. P.; Dubey, S.; Chander, S.; Gupta, N.; Bhagyawant, S.; Dwivedi, J.; Alothman, Z. A.; Wabaidur, S. M.; Sharma, S. Synthesis, biological evaluation and molecular docking of pyrimidine and quinazoline derivatives of 1,5-benzodiazepine as potential anticancer agents. J. King Saud Univ. Sci. 2020, 32, 1486-1495.
https://doi.org/10.1016/j.jksus.2019.12.002

[32]. Domínguez-Villa, F. X.; Durán-Iturbide, N. A.; Ávila-Zárraga, J. G. Synthesis, molecular docking, and in silico ADME/Tox profiling studies of new 1-aryl-5-(3-azidopropyl)indol-4-ones: Potential inhibitors of SARS CoV-2 main protease. Bioorg. Chem. 2021, 106, 104497.
https://doi.org/10.1016/j.bioorg.2020.104497

[33]. Han, Y.; Zhang, J.; Hu, C. Q.; Zhang, X.; Ma, B.; Zhang, P. In silico ADME and toxicity prediction of ceftazidime and its impurities. Front. Pharmacol. 2019, 10, 434.
https://doi.org/10.3389/fphar.2019.00434

[34]. Das, B. K.; Swamy, A. V.; Koti, B. C.; Gadad, P. C. Experimental evidence for use of Acorus calamus (asarone) for cancer chemoprevention. Heliyon 2019, 5, e01585.
https://doi.org/10.1016/j.heliyon.2019.e01585

[35]. Bhat, S.; Ashok, B. K.; Bhat, D. V.; Acharya, R.; Shukla, V. A Comparative Phytochemical Evaluation of Wild and Cultivated Acorus calamus Linn (Vacha) with Special Reference to Beta-Asarone Content. Inventi Rapid Pharm Analysis and Quality Assurance 2011, 2, 1-4.

[36]. Varshney VK, S. B. H.; Ginwal HS, M. N. High levels of diversity in the phytochemistry, ploidy and genetics of the medicinal plant Acorus calamus L. Med. Aromat. Plants (Los Angel.) 2015, s1.
https://doi.org/10.4172/2167-0412.S1-002

[37]. Kumar, R.; Prakash, O.; Pant, A. K.; Hore, S. K.; Chanotiya, C. S.; Mathela, C. S. Compositional variations and anthelmentic activity of essential oils from rhizomes of different wild populations of Acorus Calamus L. and its major component, β-asarone. Nat. Prod. Commun. 2009, 4, 1934578X0900400.
https://doi.org/10.1177/1934578X0900400222

[38]. Joshi, N.; Prakash, O.; Pant, A. K. Essential oil composition andin vitroAntibacterial activity of rhizome essential oil and β-asarone fromAcorus calamusL. Collected from lower Himalayan region of utarakhand. J. Essent. Oil-Bear. Plants 2012, 15, 32-37.
https://doi.org/10.1080/0972060X.2012.10644016

[39]. Chaubey, P.; Archana; Prakash, O.; Rai, K.; Kumar, R.; Pant, A. K. in vitro Antioxidant Activity and Total Phenolic Content of Rhizome Extracts from Acorus calamus Linn. Asian J. Chem. 2017, 29, 2357-2360.
https://doi.org/10.14233/ajchem.2017.20657

[40]. Chaubey, P.; Parki, A.; Prakash, O.; Kumar, R.; Pant, A. K. Comparative study of chemical composition and antioxidant activity of essential oil extracted from Acorus calamus L. leaves. J. Herb. Drugs 2018, 8, 203-211.
https://doi.org/10.14196/JHD.2018.203

[41]. Parki, A.; Chaubey, P.; Prakash, O.; Kumar, R.; Pant, A. K. Seasonal variation in essential oil compositions and antioxidant properties of Acorus calamus L. accessions. Medicines (Basel) 2017, 4.
https://doi.org/10.3390/medicines4040081

[42]. Hermes, L.; Römermann, J.; Cramer, B.; Esselen, M. Quantitative analysis of β-asarone derivatives in Acorus calamus and herbal food products by HPLC-MS/MS. J. Agric. Food Chem. 2021, 69, 776-782.
https://doi.org/10.1021/acs.jafc.0c05513

[43]. Ozdemir, E.; Gozel, U. Nematicidal activities of essential oilsagainst meloidogyne incognita on tomato plant. Fresenius Environ. Bull 2018, 27, 4511-4517.

[44]. Kundu, A.; Dutta, A.; Mandal, A.; Negi, L.; Malik, M.; Puramchatwad, R.; Antil, J.; Singh, A.; Rao, U.; Saha, S.; Kumar, R.; Patanjali, N.; Manna, S.; Kumar, A.; Dash, S.; Singh, P. K. A Comprehensive in vitro and in silico Analysis of Nematicidal Action of Essential Oils. Front. Plant Sci. 2020, 11, 614143.
https://doi.org/10.3389/fpls.2020.614143

[45]. Park, I.-K.; Kim, J.; Lee, S.-G.; Shin, S.-C. Nematicidal Activity of Plant Essential Oils and Components From Ajowan (Trachyspermum ammi), Allspice (Pimenta dioica) and Litsea (Litsea cubeba) Essential Oils Against Pine Wood Nematode (Bursaphelenchus Xylophilus). J. Nematol. 2007, 39, 275-279.

[46]. Wiratno; Taniwiryono, D.; Van den Berg, H.; Riksen, J. A. G.; Rietjens, I. M. C. M.; Djiwanti, S. R.; Kammenga, J. E.; Murk, A. J. Nematicidal activity of plant extracts against the root-knot nematode, Meloidogyne incognita. Open Nat. Prod. J. 2009, 2, 77-85.
https://doi.org/10.2174/1874848100902010077

[47]. Nicol, J. M.; Turner, S. J.; Coyne, D. L.; Nijs, L. den; Hockland, S.; Maafi, Z. T. Current nematode threats to world agriculture. In Genomics and Molecular Genetics of Plant-Nematode Interactions; Springer Netherlands: Dordrecht, 2011; pp. 21-43.
https://doi.org/10.1007/978-94-007-0434-3_2

[48]. Li, J.; Zhang, G.; Guo, L.; Xu, W.; Li, X.; Lee, C. S. L.; Ding, A.; Wang, T. Organochlorine pesticides in the atmosphere of Guangzhou and Hong Kong: Regional sources and long-range atmospheric transport. Atmos. Environ. (1994) 2007, 41, 3889-3903.
https://doi.org/10.1016/j.atmosenv.2006.12.052

[49]. Jiyavorranant, T.; Chanbang, Y.; Supyen, D.; Sonthichai, S.; Jatisatienr, A. The effects of Acorus Calamus Linn. And Stemona tuberose lour. Extracts on the insect pest, Plutella xylostella (Linnaeus). Acta Hortic. 2003, 223-229.
https://doi.org/10.17660/ActaHortic.2003.597.32

[50]. Asha, D. S.; Bawankar, R.; Babu, S. Current status on biological activities of Acorus Calamus - a review. Int. J. Pharm. Pharm. Sci. 2014, 66-71.

[51]. Liu, X. C.; Zhou, L. G.; Liu, Z. L.; Du, S. S. Identification of insecticidal constituents of the essential oil of Acorus calamus rhizomes against Liposcelis bostrychophila Badonnel. Molecules 2013, 18, 5684-5696.
https://doi.org/10.3390/molecules18055684

[52]. Yao, Y.; Cai, W.; Yang, C.; Xue, D.; Huang, Y. Isolation and characterization of insecticidal activity of (Z)-asarone from Acorus calamus L. Insect Sci. 2008, 15, 229-236.
https://doi.org/10.1111/j.1744-7917.2008.00205.x

[53]. Balakumbahan, R.; Rajamani, K.; Kumanan, K. Acorus calamus: An overview. J. Med. Plant Res. 2010, 4, 2740-2745.

[54]. Khanh, T. D.; Chung, I. M.; Tawata, S.; Xuan, T. D. Weed suppression by Passiflora edulis and its potential allelochemicals. Weed Res. 2006, 46, 296-303.
https://doi.org/10.1111/j.1365-3180.2006.00512.x

[55]. Satyal, P.; Paudel, P.; Poudel, A.; Dosoky, N. S.; Moriarity, D. M.; Vogler, B.; Setzer, W. N. Chemical compositions, phytotoxicity, and biological activities of Acorus calamus essential oils from Nepal. Nat. Prod. Commun. 2013, 8, 1179-1181.
https://doi.org/10.1177/1934578X1300800839

[56]. Chen, Z.; Zou, Y.; Wang, J.; Li, M.; Wen, Y. Phytotoxicity of chiral herbicide bromacil: Enantioselectivity of photosynthesis in Arabidopsis thaliana. Sci. Total Environ. 2016, 548-549, 139-147.
https://doi.org/10.1016/j.scitotenv.2016.01.046

[57]. Feng, G.; Chen, M.; Ye, H.-C.; Zhang, Z.-K.; Li, H.; Chen, L.-L.; Chen, X.-L.; Yan, C.; Zhang, J. Herbicidal activities of compounds isolated from the medicinal plant Piper sarmentosum. Ind. Crops Prod. 2019, 132, 41-47.
https://doi.org/10.1016/j.indcrop.2019.02.020

[58]. Azirak, S.; Karaman, S. Allelopathic effect of some essential oils and components on germination of weed species. Acta Agric. Scand. B Soil Plant Sci. 2008, 58, 88-92.
https://doi.org/10.1080/09064710701228353

[59]. Adnan, M.; Nazim Uddin Chy, M.; Mostafa Kamal, A. T. M.; Azad, M. O. K.; Paul, A.; Uddin, S. B.; Barlow, J. W.; Faruque, M. O.; Park, C. H.; Cho, D. H. Investigation of the biological activities and characterization of bioactive constituents of Ophiorrhiza rugosa var. Prostrata (D.don) & Mondal leaves through in vivo, in vitro, and in silico approaches. Molecules 2019, 24, 1367.
https://doi.org/10.3390/molecules24071367

[60]. Banerjee, P.; Ulker, O. C. Combinative ex vivo studies and in silico models ProTox-II for investigating the toxicity of chemicals used mainly in cosmetic products. Toxicol. Mech. Methods 2022, 32, 542-548.
https://doi.org/10.1080/15376516.2022.2053623

Supporting Agencies

Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, India and The Advanced Instrumentation Research Facility, Jawaharlal Nehru University, New Delhi, India.
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2025 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).