European Journal of Chemistry

Phytochemical analysis and therapeutic applications of some wild edible fruits growing in Uttarakhand Himalayas


Main Article Content

Bhawana Verma
Stuti Arya
Tanuja Kabdal
Vandana Arya
Om Prakash
Ravendra Kumar
Shiv Kumar Dubey
Dharmendra Singh Rawat
Sonal Tripathi


The purpose of the investigation was to evaluate the phytochemical composition and biological properties of indigenous wild edible fruits that grow in the Uttarakhand Himalayas in India. Plant extracts were prepared employing the cold percolation method in both nonpolar and polar solvents, i.e., hexane and methanol. Subsequent GC-MS analysis of the hexane extracts, namely Pyracantha crenulata hexane extract 01 (PCHE01), Berberis asiatica hexane extract 02 (BAHE02), Rubus ellipticus hexane extract 03 (REHE03), Ficus palmata Forssk hexane extract 04 (FPHE04), and Myrica esculenta hexane extract 05 (MEHE05), revealed the identification of more than 32, 40, 44, 53, and 48 constituents, which accounted for 74.4, 83.4, 78.9, 70.0, and 73.2% of the overall composition, respectively. The nutritional elements of Pyracantha crenulata (PC), Rubus ellipticus (RE), Myrica esculenta (ME), Ficus palmata Forsk (FP) and Berberis asiatica (BA) were also studied. The results indicated that the boron content was highest in all samples. Hexane and methanol fruit extracts were studied for their total phenolic and flavonoid content, which revealed variations. Both extracts were examined for different biological activities. The antioxidant activity was evaluated using three different methods. In vitro evaluation of anti-inflammatory activity was performed by measuring the denaturation of egg albumin protein. In the methanolic extract, the lowest IC50 value was recorded for REME3 at 7.50±0.03 µg/mL. Likewise, in the hexane extract, BAHE02 exhibited a minimum IC50 value of 4.47±0.87 µg/mL. The evaluation of antidiabetic activity of hexane and methanol extracts was carried out through an α-amylase inhibition assay. The comprehensive biological activity assays and elemental analyzes underscored the significant nutraceutical value of these plants. It was evident that these plants have the potential to serve as effective nutrient supplements and could be of considerable industrial importance in the field of the nutraceutical sector. This research is important not only from an academic perspective, but also for establishing a valuable database that can guide the sustainable use of wild edible plants.

icon graph This Abstract was viewed 100 times | icon graph Article PDF downloaded 35 times

How to Cite
Verma, B.; Arya, S.; Kabdal, T.; Arya, V.; Prakash, O.; Kumar, R.; Dubey, S. K.; Rawat, D. S.; Tripathi, S. Phytochemical Analysis and Therapeutic Applications of Some Wild Edible Fruits Growing in Uttarakhand Himalayas. Eur. J. Chem. 2024, 15, 110-119.

Article Details

Crossref - Scopus - Google - European PMC

[1]. Shitan, N. Secondary metabolites in plants: transport and self-tolerance mechanisms. Biosci. Biotechnol. Biochem. 2016, 80, 1283-1293.

[2]. Ammara, A.; Sobia, A.; Nureen, Z.; Sohail, A.; Abid, S.; Aziz, T.; Nahaa, M. A.; Rewaa, S. J.; Ahellah, M. J.; Nouf, S. A. A.; Nehad, A. S.; Manal, Y. S.; Amnah, A. A.; Majid, A.; Abdulhakeem, S. A.; Anas, S. D.; Saad, A. Revolutionizing the effect of Azadirachta indica extracts on edema induced changes in C-reactive protein and interleukin-6 in albino rats: in silico and in vivo approach. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 5951-5963.

[3]. Riasat, A.; Jahangeer, M.; Sarwar, A.; Saleem, Y.; Shahzad, K.; Ur Rahman, S.; Aziz, R.; Aziz, T.; Alharbi, M.; Albakeiri, T. H.; Alasmari, A. F. Scrutinizing the therapeutic response of Phyllanthus exmblica's different doses to restore the immunomodulation potential in immunosuppressed female albino rats. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 9854-9865.

[4]. Srivastava, S. K.; Singh Rawat, A. K.; Mehrotra, S. Pharmacognostic evaluation of the root of Berberis asiatica. Pharm. Biol. 2004, 42, 467-473.

[5]. Potdar, D.; Hirwani, R. R.; Dhulap, S. Phyto-chemical and pharmacological applications of Berberis aristata. Fitoterapia 2012, 83, 817-830.

[6]. Pandey, Y.; Bhatt, S. S. Overview of Himalayan yellow raspberry (Rubus ellipticus Smith.): A nutraceutical plant. J. Appl. Nat. Sci. 2016, 8, 494-499.

[7]. Aminabee, S.; Lakshmana Rao, A.; Sowmya, K.; Nymisha, D.; Kusuma Naga Lakshmi, K.; Manikanta, K. V. N.; Praveen Kumar, P. Evaluation of Analgesic Activity of Ficus Palmata: Evaluation of Analgesic activity of Ficus palmata. Iran. J. Pharm. Sci. 2019, 15, 47-60.

[8]. Bahuguna, Y. M.; Rawat, M. S. M.; Juyal, V.; Gusain, K. Evaluation of Pyracantha crenulata Roem for antiurolithogenic activity in albino rats. Afr. J. Urol. 2009, 15, 159-166.

[9]. Rawat, S.; Jugran, A.; Giri, L.; Bhatt, I. D.; Rawal, R. S. Assessment of antioxidant properties in fruits ofMyrica esculenta: A popular wild edible species in Indian Himalayan Region. Evid. Based. Complement. Alternat. Med. 2011, 2011, 1-8.

[10]. Pant, G.; Prakash, O.; Chandra, M.; Sethi, S.; Punetha, H.; Dixit, S.; Pant, A. K. Biochemical analysis, pharmacological activity, antifungal activity and mineral analysis in methanolic extracts of Myrica esculenta and Syzygium cumini: the Indian traditional fruits growing in Uttarakhand Himalaya. Indian J. Pharm. Biol. Res. 2014, 2, 26-34.

[11]. Kumar, S.; Dobos, G. J.; Rampp, T. The significance of ayurvedic medicinal plants. J. Evid. Based Complementary Altern. Med. 2017, 22, 494-501.

[12]. Adams, R. P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry; Allured Publishing, 2007.

[13]. Bremner, J. M. Determination of nitrogen in soil by the Kjeldahl method. J. Agric. Sci. 1960, 55, 11-33.

[14]. Zasoski, R. J.; Burau, R. G. A rapid nitric‐perchloric acid digestion method for multi‐element tissue analysis. Commun. Soil Sci. Plant Anal. 1977, 8, 425-436.

[15]. Black, J. W.; Duncan, W. A. M.; Shanks, R. G. Comparison of some properties of pronethalol and propranolol. Br. J. Pharmacol. Chemother. 1965, 25, 577-591.

[16]. Lindsay, W. L.; Norvell, W. A. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci. Soc. Am. J. 1978, 42, 421-428.

[17]. John, M. K.; Chuah, H. H.; Neufeld, J. H. Application of improved azomethine-H method to the determination of boron in soils and plants. Anal. Lett. 1975, 8, 559-568.

[18]. Shetty, K.; Curtis, O. F.; Levin, R. E.; Witkowsky, R.; Ang, W. Prevention of Vitrification Aßociated with in vitro Shoot Culture of Oregano. (Origanum vulgare) by Pseudomonas spp. J. Plant Physiol. 1995, 147, 447-451.

[19]. Chandler, S. F.; Dodds, J. H. The effect of phosphate, nitrogen and sucrose on the production of phenolics and solasodine in callus cultures of solanum laciniatum. Plant Cell Rep. 1983, 2, 205-208.

[20]. Abbas, M.; Khan, A. A.; Khan, T.; Qadir, R.; Aziz, T.; Alharbi, M.; Alsahammari, A.; Alasmari, A. F. Elucidation and comparative assessment of the phytochemical content and antibacterial activity of Parthenium hysterophorus extract in different solvents. Appl. Ecol. Environ. Res. 2024, 22, 761-775.

[21]. Woisky, R. G.; Salatino, A. Analysis of propolis: some parameters and procedures for chemical quality control. J. Apic. Res. 1998, 37, 99-105.

[22]. Riaz, M.; Nawaz, M.; Qadir, R.; Hussain, S.; Roheen, T.; Afzal, M.; Perviaz, M.; Ali, A.; Aziz, T.; Alharbi, M.; Albekairi, T. H.; Alasmari, A. F. Characterization and antioxidant potential of white mustard (Brassica hirta) leaf extract and stabilization of sunflower oil. Open Chem. 2023, 21, 20230175.

[23]. Hou, W.-C.; Lin, R.-D.; Cheng, K.-T.; Hung, Y.-T.; Cho, C.-H.; Chen, C.-H.; Hwang, S.-Y.; Lee, M.-H. Free radical-scavenging activity of Taiwanese native plants. Phytomedicine 2003, 10, 170-175.

[24]. Nagarkoti, K.; Prakash, O.; Rawat, A.; Patel, C.; Kumar, R.; Srivastava, R. M.; Kumar, S.; Rawat, D. S. Micromeria biflora Benth: Phytochemical analysis and in vitro biological investigations of essential oil with concomitant in silico molecular docking, PASS prediction and ADME/tox studies. J. Essent. Oil-Bear. Plants 2023, 26, 261-293.

[25]. Naveed, M.; Ishfaq, H.; Rehman, S. U.; Javed, A.; Waseem, M.; Makhdoom, S. I.; Aziz, T.; Alharbi, M.; Alshammari, A.; Alasmari, A. F. GC-MS profiling of Bacillus spp. metabolites with an in vitro biological activity assessment and computational analysis of their impact on epithelial glioblastoma cancer genes. Front. Chem. 2023, 11, 1287599.

[26]. Hsu, C. Chemical composition, physical properties, and antioxidant activities of yam flours as affected by different drying methods. Food Chem. 2003, 83, 85-92.

[27]. Singh, A.; Palariya, D.; Dhami, A.; Prakash, O.; Kumar, R.; Rawat, D. S.; Pant, A. K. Biological activities and Phytochemical analysis of Zanthoxylum armatum DC. leaves and bark extracts collected from Kumaun region, Uttarakhand, India. J. Med. Herbs Ethnomed. 1970, 1-10.

[28]. Ocsoy, I.; Paret, M. L.; Ocsoy, M. A.; Kunwar, S.; Chen, T.; You, M.; Tan, W. Nanotechnology in plant disease management: DNA-directed silver nanoparticles on graphene oxide as an antibacterial against Xanthomonas perforans. ACS Nano 2013, 7, 8972-8980.

[29]. Mirzaei, A.; Mirzaei, M.; Khosravani, S. A.; Salehpour, Z. Radical Scavenging Potential of Iranian Quercus Brantii and Juglans Regia. Life Sci. J. 2013, 10, 1246-1250. life1007s/198_19789life1007s_1246_1250.pdf (accessed January 10, 2024).

[30]. Joshi, A.; Pant, A. K.; Prakash, O.; Kumar, R.; Stocki, M.; Isidorov, V. A. Chemical composition, antimicrobial, and antioxidant activities of the essential oils from stem, leaves, and seeds of Caryopteris foetida (D. don) Thell. Indian J. Nat. Prod. Resour. 2021, 12, 214-224.

[31]. Kidane, Y.; Bokrezion, T.; Mebrahtu, J.; Mehari, M.; Gebreab, Y. B.; Fessehaye, N.; Achila, O. O. In Vitro Inhibition of α-Amylase and α-Glucosidase by Extracts from Psiadia punctulata and Meriandra bengalensis. Evid. Based. Complement. Alternat. Med. 2018, 2018, 1-9.

[32]. Bacha, W.; Hamza, A.; Ali Khan, A.; Aziz, T.; Wu, J.; Al-Asmari, F.; Y Sameeh, M.; S Alamri, A.; Alhomrani, M.; Alghamdi, A. A.; A. Alqasem, A.; K. Baothman, B.; ALSuhaymi, N.; Fathuldeen, S. M.; Ahmad, W. Scrutinizing the antidiabetic, antidiarrheal, and anti-inflammatory activities of methanolic extract of pomegranate peel via different approaches. Ital. J. Food Sci. 2024, 36, 1-14.

[33]. Garrido, G. In vivo and in vitro anti-inflammatory activity of Mangifera indica L. extract (VIMANGS). Pharmacol. Res. 2004, 50, 143-149.

[34]. Rawat, A.; Prakash, O.; Kumar, R.; Arya, S.; Srivastava, R. M. Hedychium spicatum Sm.: Chemical composition with biological activities of methanolic and ethylacetate oleoresins from rhizomes. J. Biol. Act. Prod. Nat. 2021, 11, 269-288.

[35]. Chandra, H.; Bishnoi, P.; Yadav, A.; Patni, B.; Mishra, A.; Nautiyal, A. Antimicrobial resistance and the alternative resources with special emphasis on plant-based antimicrobials-A review. Plants 2017, 6, 16.

[36]. Lamichhane, B.; Adhikari, S.; Shrestha, P.; Govinda Shrestha, B. Study of phytochemical, antioxidant, antimicrobial and anticancer activity of Berberis Aristata. J. Trop. Life Sci. 2014, 4, 01-07.

[37]. Upwar, N.; Patel, R.; Waseem, N.; Kumar Mahobia, N. Pharmacognostic Evaluation of stem of Berberis aristata DC. Pharmacogn. J. 2010, 2, 5-9.

[38]. Lami̇chhane, A.; Khatri̇, S.; Dhungana, M.; Tri̇pathi̇, B.; Bhattrai̇, N.; Baral, R.; Jamarkattel, N. Qualitative and quantitative phytochemical screening and free radical scavenging activity of different parts of Rubus ellipticus Sm. Current Perspectives on Medicinal and Aromatic Plants (CUPMAP) 2022, 5, 106-117. cupmap.1194739

[39]. Sharma, U.; Kumar, A. In vitro antioxidant activity of Rubus ellipticus fruits. J. Adv. Pharm. Technol. Res. 2011, 2, 47-50.

[40]. Alqasoumi, S. I.; Basudan, O. A.; Al-Rehaily, A. J.; Abdel-Kader, M. S. Phytochemical and pharmacological study of Ficus palmata growing in Saudi Arabia. Saudi Pharm. J. 2014, 22, 460-471.

[41]. Iqbal, D.; Khan, M. S.; Khan, A.; Khan, M. S.; Ahmad, S.; Srivastava, A. K.; Bagga, P. in vitroscreening forβ-hydroxy-β-methylglutaryl-CoA reductase inhibitory and antioxidant activity of sequentially extracted fractions officus palmataforsk. Biomed Res. Int. 2014, 2014, 1-10.

[42]. Lal, S.; Verma, R.; Chauhan, A.; Dhatwalia, J.; Guleria, I.; Ghotekar, S.; Thakur, S.; Mansi, K.; Kumar, R.; Kumari, A.; Kumar, P. Antioxidant, antimicrobial, and photocatalytic activity of green synthesized ZnO-NPs from Myrica esculenta fruits extract. Inorg. Chem. Commun. 2022, 141, 109518.

[43]. Dawang, S.; Zuchun, Z.; Wong, H.; Lai, Y. F. Tannins and other phenolics from Myrica esculenta bark. Phytochemistry 1988, 27, 579-583.

[44]. Belwal, T.; Dhyani, P.; Bhatt, I. D.; Rawal, R. S.; Pande, V. Optimization extraction conditions for improving phenolic content and antioxidant activity in Berberis asiatica fruits using response surface methodology (RSM). Food Chem. 2016, 207, 115-124.

[45]. Tewari, D.; Zengin, G.; Ak, G.; Sinan, K. I.; Cziáky, Z.; Mishra, S. T.; Jekő, J. Phenolic profiling, antioxidants, multivariate, and enzyme inhibitory properties of wild Himalayan fig (ficus palmataForssk.): A potential candidate for designing innovative nutraceuticals and related products. Anal. Lett. 2021, 54, 1439-1456.

[46]. Singh, R.; Negi, P. S.; Dwivedi, S. K. Indian Hawthorn (Pyracantha crenulata). In New Age Herbals; Springer Singapore: Singapore, 2018; pp. 135-149.

[47]. Otsuka, H.; Fujioka, S.; Komiya, T.; Goto, M.; Hiramatsu, Y.; Fujimura, H. Studies on anti-inflammatory agents. V. A new anti-inflammatory constituent of Pyracantha crenulata Roem. Chem. Pharm. Bull. (Tokyo) 1981, 29, 3099-3104.

[48]. Sajid, M.; Khan, M. R.; Shah, S. A.; Majid, M.; Ismail, H.; Maryam, S.; Batool, R.; Younis, T. Investigations on anti-inflammatory and analgesic activities of Alnus nitida Spach (Endl). stem bark in Sprague Dawley rats. J. Ethnopharmacol. 2017, 198, 407-416.

[49]. Subba, B.; Gaire, S.; Raj Sharma, K. Analysis of Phyto-constituents, antioxidant, and alpha amylase inhibitory activities of Persea Americana Mill., Rhododendron arboretum Sm. Rubus ellipticus Sm. From Arghakhanchi District Nepal. Asian J. Pharm. Clin. Res. 2019, 12, 301.

[50]. Emiru, Y. K.; Periasamy, G.; Karim, A.; Rehman, N. U.; Ansari, M. N. Evaluation of in vitro α-amylase inhibitory activity and antidiabetic effect of Myrica salicifolia in streptozotocin-induced diabetic mice. Pak. J. Pharm. Sci. 2020, 33, 1917-1926. PJPS.2020.33.4.SUP.1917-1926.1

[51]. Seal, T. Nutritional composition of wild edible fruits in meghalaya state of India and their ethno-botanical importance. J. Bot. (Faisalabad) 2011, 6, 58-67.

Supporting Agencies

Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, 263145, Udham Singh Nagar, Uttarakhand, India

Dimensions - Altmetric - scite_ - PlumX

Downloads and views


Download data is not yet available.


Metrics Loading ...
License Terms
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

License Terms


Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License ( By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License ( are administered by Atlanta Publishing House LLC (European Journal of Chemistry).