European Journal of Chemistry

Fluorinated pyrazolinic thiosemicarbazones: selective synthesis and computational analysis

Crossmark


Main Article Content

Victor Maia Miranda
Vanessa Fernandes Machado
Fabio Luiz Navarro Marques
Victor Marcelo Deflon

Abstract

Thiosemicarbazones are a class of iminic organosulfur compounds synthesized by condensation reaction between a thiosemicarbazide and an aldehyde or ketone. Such compounds present a wide range of biological activities, either as sole organic compounds or in association with metallic species. The fluorinated pyrazoline cyclic thiosemicarbazones described herein were synthesized from 4,4,4-trifluoro-1-phenyl-1,3-butanedione and three thiosemicarbazides. The reactions resulted in thiosemicarbazones 1, 2, and 3, with 51, 70, and 71% yields, respectively. which were characterized by elemental analysis, FTIR, 1H and 19F{1H} NMR, mass spectrometry and single crystal X-ray diffraction. The spectral data confirm that the thiosemicarbazones are cyclic the both in solid state and solution, as no evidence of ring-chain tautomerism has been observed. Additionally, single-crystal X-ray diffraction studies revealed that the compounds mentioned above crystallized in centrosymmetric space groups, two of them in monoclinic P21/n and the last one in triclinic P . Theoretical free energies of formation were calculated using the DFT methodology, and the results indicate that the ring isomer is significantly more stable than the chain isomer; thus, no ring-chain isomerism is expected to form, in agreement with the experimental data.


icon graph This Abstract was viewed 15 times | icon graph Article PDF downloaded 1 times icon graph Article SUPP. MATER. downloaded 0 times icon graph Article CIF FILE downloaded 0 times icon graph Article CIF FILE downloaded 0 times icon graph Article CIF FILE downloaded 0 times

How to Cite
(1)
Miranda, V. M.; Machado, V. F.; Marques, F. L. N.; Deflon, V. M. Fluorinated Pyrazolinic Thiosemicarbazones: Selective Synthesis and Computational Analysis. Eur. J. Chem. 2025, 16, 331-338.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Beraldo, H.; Gambino, D. The wide pharmacological versatility of semicarbazones, thiosemicarba-zones and their metal complexes. Mini Rev. Med. Chem. 2004, 4, 31-39.
https://doi.org/10.2174/1389557043487484

[2]. Muleta, F.; Alansi, T.; Eswaramoorthy, R. A Review on Synthesis, Characterization Methods and Biological Activities of Semicarbazone, Thiosemicarbazone and Their Transition Metal Complexes. J. Nat. Sci. Res. 2019, 9 (17), 33−46. https://doi.org/10.7176/JNSR/9-17-04

[3]. Prajapati, N. P.; Patel, H. D. Novel thiosemicarbazone derivatives and their metal complexes: Recent development. Synthetic. Commun. Rev. 2019, 49 (21), 2767−2804.

[4]. Moorthy, N.; Cerqueira, N.; Ramos, M.; Fernandes, P. Development of Ribonucleotide Reductase Inhibitors: A Review on Structure Activity Relationships. Mini Rev. Med. Chem. 2013, 13 (13), 1862-1872.
https://doi.org/10.2174/13895575113136660090

[5]. Serda, M.; Kalinowski, D. S.; Rasko, N.; Potůčková, E.; Mrozek-Wilczkiewicz, A.; Musiol, R.; Małecki, J. G.; Sajewicz, M.; Ratuszna, A.; Muchowicz, A.; Gołąb, J.; Šimůnek, T.; Richardson, D. R.; Polanski, J. Exploring the Anti-Cancer Activity of Novel Thiosemicarbazones Generated through the Combination of Retro-Fragments: Dissection of Critical Structure-Activity Relationships. PLoS. ONE. 2014, 9 (10), e110291.
https://doi.org/10.1371/journal.pone.0110291

[6]. Haldys, K.; Latajka, R. Thiosemicarbazones with tyrosinase inhibitory activity. Med. Chem. Commun. 2019, 10 (3), 378-389.
https://doi.org/10.1039/C9MD00005D

[7]. Bajaj, K.; Buchanan, R. M.; Grapperhaus, C. A. Antifungal activity of thiosemicarbazones, bis(thiosemicarbazones), and their metal complexes. Journal. of. Inorganic. Biochemistry. 2021, 225, 111620.
https://doi.org/10.1016/j.jinorgbio.2021.111620

[8]. Kumar, S.; Bawa, S.; Drabu, S.; Kumar, R.; Gupta, H. Biological Activities of Pyrazoline Derivatives -A Recent Development. Recent Pat. Anti-infect. 2009, 4 (3), 154-163.
https://doi.org/10.2174/157489109789318569

[9]. Jain, A. K.; Sharma, S.; Vaidya, A.; Ravichandran, V.; Agrawal, R. K. 1,3,4‐Thiadiazole and its Derivatives: A Review on Recent Progress in Biological Activities. Chem. Biol. Drug. Des. 2013, 81 (5), 557-576.
https://doi.org/10.1111/cbdd.12125

[10]. Yusuf, M.; Jain, P. Synthesis and biological significances of 1,3,4-thiadiazolines and related heterocyclic compounds. Arab. J. Chem. 2014, 7 (5), 525-552.
https://doi.org/10.1016/j.arabjc.2011.02.006

[11]. Ali, S. H.; Sayed, A. R. Review of the synthesis and biological activity of thiazoles. Syn. Commun. Rev. 2020, 51 (5), 670-700.
https://doi.org/10.1080/00397911.2020.1854787

[12]. Salsi, F.; Bulhões Portapilla, G.; Schutjajew, K.; Carneiro, Z. A.; Hagenbach, A.; de Albuquerque, S.; da Silva Maia, P. I.; Abram, U. Thiosemicarbazones and thiadiazines derived from fluorinated benzoylthioureas: Synthesis, crystal structure and anti-Trypanosoma cruzi activity. J. Fluor. Chem. 2018, 215, 52-61.
https://doi.org/10.1016/j.jfluchem.2018.08.004

[13]. Bautista, J.; Flores-Alamo, M.; Tiburcio, J.; Vieto, R.; Torrens, H. Synthesis and Structural Characterization of Fluorinated Thiosemicarbazones. Molecules. 2013, 18 (10), 13111-13123.
https://doi.org/10.3390/molecules181013111

[14]. Fayed, E. A.; Thabet, A.; El-Gilil, S. M.; Elsanhory, H. M.; Ammar, Y. A. Fluorinated thiazole-thiosemicarbazones hybrids as potential PPAR-γ agonist and α-amylase, α-glucosidase antagonists: Design, synthesis, in silico ADMET and docking studies and hypoglycemic evaluation. J. Mol. Struc. 2024, 1301, 137374.
https://doi.org/10.1016/j.molstruc.2023.137374

[15]. Yerien, D. E.; Bonesi, S.; Postigo, A. Fluorination methods in drug discovery. Org. Biomol. Chem. 2016, 14 (36), 8398-8427.
https://doi.org/10.1039/C6OB00764C

[16]. Sheikhi, N.; Bahraminejad, M.; Saeedi, M.; Mirfazli, S. S. A review: FDA-approved fluorine-containing small molecules from 2015 to 2022. Eur. J. Med. Chem. 2023, 260, 115758.
https://doi.org/10.1016/j.ejmech.2023.115758

[17]. Santoni, M.; Büttner, T.; Rescigno, P.; Fiala, O.; Cavasin, N.; Basso, U.; Taha, T.; Massari, F.; Myint, Z. W.; Formisano, L.; Galli, L.; Scagliarini, S.; Matrana, M. R.; Facchini, G.; Bamias, A.; Messina, C.; Zacchi, F.; Manneh, R. K.; Roviello, G.; Santini, D.; Poprach, A.; Navratil, J.; Uher, M.; Calabrò, F.; Pierce, E.; Berardi, R.; Aurilio, G.; Zakopoulou, R.; Rizzo, A.; Ansari, J.; Rizzo, M.; Bisonni, R.; Mollica, V.; Incorvaia, L.; Spinelli, G.; Jiang, X. Y.; Chandler, R. A.; Grillone, F.; Morelli, F.; Buti, S.; Maluf, F. C.; Marques Monteiro, F. S.; Battelli, N.; Porta, C.; Caffo, O.; Soares, A. Apalutamide in Metastatic Castration-sensitive Prostate Cancer: Results from the Multicenter Real-world ARON-3 Study. Eur. Urol. Oncol. 2025, 8 (2), 444-451.
https://doi.org/10.1016/j.euo.2024.11.005

[18]. Huang, Q.; Zhao, R.; Xu, L.; Hao, X.; Tao, S. Treatment of multiple myeloma with selinexor: a review. Ther. Adv. Hematol., 2024, 15, 1-7, https://doi.org/10.1177/20406207231219442.
https://doi.org/10.1177/20406207231219442

[19]. Padhyé, S.; Kauffman, G. B. Transition metal complexes of semicarbazones and thiosemicarbazones. Coord. Chem. Rev. 1985, 63, 127-160.
https://doi.org/10.1016/0010-8545(85)80022-9

[20]. Casas, J. S.; Garcı́a-Tasende, M. S.; Sordo, J. Main group metal complexes of semicarbazones and thiosemicarbazones. A structural review. Coord. Chem. Rev. 2000, 209, 197-261.
https://doi.org/10.1016/S0010-8545(00)00363-5

[21]. Lobana, T. S.; Sharma, R.; Bawa, G.; Khanna, S. Bonding and structure trends of thiosemicarbazone derivatives of metals-An overview. Coord. Chem. Rev. 2009, 253 (7-8), 977-1055.
https://doi.org/10.1016/j.ccr.2008.07.004

[22]. Dilworth, J. R.; Hueting, R. Metal complexes of thiosemicarbazones for imaging and therapy. Inorg. Chim. Acta 2012, 389, 3-15.
https://doi.org/10.1016/j.ica.2012.02.019

[23]. Siddiqui, E. J.; Azad, I.; Khan, D. A.; Khan, D. T. Thiosemicarbazone complexes as versatile medicinal chemistry agents: A review. J. Drug. Delivery. Ther. 2019, 9 (3), 689-703.
https://doi.org/10.22270/jddt.v9i3.2888

[24]. Atasever-Arslan, B.; Kaya, B.; Şahin, O.; Ülküseven, B. A square planar cobalt(II)-thiosemicarbazone complex. Synthesis, characterization, antiviral and anti-inflammatory potential. J. Mol. Struct. 2025, 1321, 140109.
https://doi.org/10.1016/j.molstruc.2024.140109

[25]. Ngoudjou, L. E.; Paboudam, A. G.; Yepseu, A. P.; Kuate, M.; Doungmo, G.; Ndifon, P. T. Synthesis, characterization, and biological activity of Cu(II), Ni(II), and Zn(II) complexes of a tridentate heterocyclic Schiff base ligand derived from thiosemicarbazide and 2-benzoylpyridine. Eur. J. Chem. 2022, 13 (3), 299-306.
https://doi.org/10.5155/eurjchem.13.3.299-306.2280

[26]. Collaborative Medicinal Development Pty Limited. CuATSM Compared With Placebo for Treatment of ALS/MND. Retrieved Dec 30, 2024, from https://clinicaltrials.gov/study/NCT04082832

[27]. Gangemi, V.; Mignogna, C.; Guzzi, G.; Lavano, A.; Bongarzone, S.; Cascini, G. L.; Sabatini, U. Impact of [64Cu][Cu(ATSM)] PET/CT in the evaluation of hypoxia in a patient with Glioblastoma: a case report. BMC. Cancer. 2019, 19 (1), 1197 https://doi.org/10.1186/s12885-019-6368-8.
https://doi.org/10.1186/s12885-019-6368-8

[28]. Guo, Z.; Richardson, D. R.; Kalinowski, D. S.; Kovacevic, Z.; Tan-Un, K. C.; Chan, G. C. The novel thiosemicarbazone, di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC), inhibits neuroblastoma growth in vitro and in vivo via multiple mechanisms. J. Hematol. Oncol. 2016, 9 (1), 98 https://doi.org/10.1186/s13045-016-0330-x.
https://doi.org/10.1186/s13045-016-0330-x

[29]. Kunos, C. A.; Andrews, S. J.; Moore, K. N.; Chon, H. S.; Ivy, S. P. Randomized Phase II Trial of Triapine-Cisplatin-Radiotherapy for Locally Advanced Stage Uterine Cervix or Vaginal Cancers. Front. Oncol. 2019, 9, 1067 https://doi.org/10.3389/fonc.2019.01067.
https://doi.org/10.3389/fonc.2019.01067

[30]. Sheldrick, G. M. A short history of SHELX. Acta. Crystallogr. A. Found. Crystallogr. 2007, 64 (1), 112-122.
https://doi.org/10.1107/S0108767307043930

[31]. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta. Crystallogr. C. Struct. Chem. 2015, 71 (1), 3-8.
https://doi.org/10.1107/S2053229614024218

[32]. Tirado-Rives, J.; Jorgensen, W. L. Performance of B3LYP Density Functional Methods for a Large Set of Organic Molecules. J. Chem. Theory. Comput. 2008, 4 (2), 297-306.
https://doi.org/10.1021/ct700248k

[33]. Scalmani, G.; Frisch, M. J. Continuous surface charge polarizable continuum models of solvation. I. General formalism. The. Journal. of. Chemical. Physics. 2010, 132 (11), 114110 https://doi.org/10.1063/1.3359469.
https://doi.org/10.1063/1.3359469

[34]. Aggarwal, R.; Kumar, R.; Kumar, S.; Garg, G.; Mahajan, R.; Sharma, J. Synthesis and antibacterial activity of some 5-hydroxy-5-trifluoromethyl-4,5-dihydropyrazol-1-thiocarboxamides, 3-trifluoromethylpyrazol-1-thiocarboxamides and 4-aryl-2-(5(3)-trifluoromethyl-1-pyrazolyl)thiazoles. J. Fluor. Chem. 2011, 132 (11), 965-972.
https://doi.org/10.1016/j.jfluchem.2011.07.029

[35]. Karplus, M. Vicinal Proton Coupling in Nuclear Magnetic Resonance. J. Am. Chem. Soc. 1963, 85 (18), 2870-2871.
https://doi.org/10.1021/ja00901a059

[36]. Socrates, G. Infrared and Raman characteristic group frequencies: Tables and charts; 3rd ed.; John Wiley & Sons: Chichester, England, 2004.

[37]. Allen, F. H.; Kennard, O.; Watson, D. G.; Brammer, L.; Orpen, A. G.; Taylor, R. Tables of bond lengths determined by X-ray and neutron diffraction. Part 1. Bond lengths in organic compounds. J. Chem. Soc., Perkin. Trans. 2. 1987, 12, S1−S19.
https://doi.org/10.1039/p298700000s1

[38]. Seena, E. B.; Bessy Raj, B. N.; Prathapachandra Kurup, M. R.; Suresh, E. A crystallographic study of 2-hydroxyacetophenone N(4)-cyclohexyl thiosemicarbazone. J. Chem. Crystallogr. 2006, 36 (3), 189-193.
https://doi.org/10.1007/s10870-005-9045-5

[39]. Seena, E. B.; Manoj, E.; Kurup, M. R. 2-Hydroxyacetophenone 4-phenylthiosemicarbazone. Acta. Crystallogr. C. Cryst. Struct. Commun. 2006, 62 (8), o486-o488.
https://doi.org/10.1107/S0108270106014776

[40]. Seena, E. B.; Prathapachandra Kurup, M. R.; Suresh, E. Crystal Study of Salicylaldehyde N(4)-Phenylthiosemicarbazone. J. Chem. Crystallogr. 2007, 38 (2), 93-96.
https://doi.org/10.1007/s10870-007-9268-8

[41]. Zelenin, K. N.; Kuznetsova, O. B.; Alekseyev, V. V.; Terentyev, P. B.; Torocheshnikov, V. N.; Ovcharenko, V. V. Ring-chain tautomerism of N-substituted thiosemicarbazones. Tetrahedron 1993, 49, 1257-1270.
https://doi.org/10.1016/S0040-4020(01)85816-6

[42]. Hassan, A. A.; Shawky, A. M.; Shehatta, H. S. Chemistry and heterocyclization of thiosemicarbazones. J. Heterocyclic Chem. 2011, 49 (1), 21-37.
https://doi.org/10.1002/jhet.677

Supporting Agencies

Fundação de Amparo à Pesquisa do Estado de São Paulo (Grants 2009/54011-8 and 2021/10265-8) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (Grants 313198/2021-7 and 306317/2025-7).
Most read articles by the same author(s)

Most read articles by the same author(s)

TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

License Terms

by-nc

Copyright © 2025 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).