European Journal of Chemistry

Environmentally friendly syntheses of flavone derivatives from chalcones and the evaluation of their antimicrobial activity

Crossmark


Main Article Content

Sumaiya Khan
Umme Aiman Liza
Afsana Mimi
Tama Kapasia
Md Aman Ullah Aman
A. H. M. Emon Ali
Mohammad Jahirul Alam
Mohammad Mamun Hossain

Abstract

Polyphenolic flavonoid compounds are commonly found in colorful vegetables and fruits, as well as other foods such as coffee, tea, wine, beer, and chocolate. Recent studies have highlighted their potent antioxidant properties, which contribute significantly to various biological functions and overall health. Chalcones and flavones represent important subclasses of flavonoids. In addition to their natural occurrence, these compounds can also be synthesized in the laboratory using chemical methods. In this study, chalcones and flavones were synthesized through Claisen-Schmidt condensation. To produce flavone derivatives (4a-e) from their corresponding chalcones (3a-e), microwave irradiation (MWI) and conventional heating (CH) methods were employed. The MWI technique proved to be more eco-friendly and cost-effective and offers greater yields and reduced reaction time compared to the conventional method. The structures of the synthesized compounds were confirmed by ultraviolet (UV) spectroscopy, nuclear magnetic resonance (NMR), infrared (IR) spectroscopy, and elemental analysis. Using Gram-positive bacteria (Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa), the antibacterial activities of the synthesized compounds were analysed. All synthesized flavones showed significant antibacterial activity but zero activity against Gram-negative bacteria, Pseudomonas aeruginosa, in different concentrations. Compound 4a showed highest activity 19 mm zone of inhibition against Gram-positive bacteria Staphylococcus aureus with concentration 128 µg/disc.


icon graph This Abstract was viewed 12 times | icon graph Article PDF downloaded 2 times

How to Cite
(1)
Khan, S.; Liza, U. A.; Mimi, A.; Kapasia, T.; Aman, M. A. U.; Ali, A. H. M. E.; Alam, M. J.; Hossain, M. M. Environmentally Friendly Syntheses of Flavone Derivatives from Chalcones and the Evaluation of Their Antimicrobial Activity. Eur. J. Chem. 2025, 16, 339-344.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Gutiérrez-Grijalva, E.; Picos-Salas, M.; Leyva-López, N.; Criollo-Mendoza, M.; Vazquez-Olivo, G.; Heredia, J. Flavonoids and Phenolic Acids from Oregano: Occurrence, Biological Activity and Health Benefits. Plants. 2017, 7 (1), 2. https://doi.org/10.3390/plants7010002
https://doi.org/10.3390/plants7010002

[2]. Chen, S.; Wang, X.; Cheng, Y.; Gao, H.; Chen, X. A Review of Classification, Biosynthesis, Biological Activities and Potential Applications of Flavonoids. Molecules. 2023, 28 (13), 4982.
https://doi.org/10.3390/molecules28134982

[3]. Santos, E. L.; Maia, B. H.; Ferriani, A. P.; Teixeira, S. D. Flavonoids: Classification, Biosynthesis and Chemical Ecology. Flavonoids. -. From. Biosynthesis. to. Human. Health. 2017, 13, 78-94. https://doi.org/10.5772/67861
https://doi.org/10.5772/67861

[4]. Shah, A.; Smith, D. L. Flavonoids in Agriculture: Chemistry and Roles in, Biotic and Abiotic Stress Responses, and Microbial Associations. Agronomy. 2020, 10 (8), 1209.
https://doi.org/10.3390/agronomy10081209

[5]. Wang, T.; Li, Q.; Bi, K. Bioactive flavonoids in medicinal plants: Structure, activity and biological fate. Asian. Journal. of. Pharmaceutical. Sciences. 2018, 13 (1), 12-23.
https://doi.org/10.1016/j.ajps.2017.08.004

[6]. Patil, V. M.; Masand, N. Anticancer Potential of Flavonoids: Chemistry, Biological Activities, and Future Perspectives. Studies. in. Natural. Products. Chemistry. 2018, 401-430.
https://doi.org/10.1016/B978-0-444-64179-3.00012-8

[7]. Brunetti, C.; Di Ferdinando, M.; Fini, A.; Pollastri, S.; Tattini, M. Flavonoids as Antioxidants and Developmental Regulators: Relative Significance in Plants and Humans. IJMS. 2013, 14 (2), 3540-3555.
https://doi.org/10.3390/ijms14023540

[8]. Nijveldt, R. J.; van Nood, E.; van Hoorn, D. E.; Boelens, P. G.; van Norren, K.; van Leeuwen, P. A. Flavonoids: a review of probable mechanisms of action and potential applications. The. American. Journal. of. Clinical. Nutrition. 2001, 74 (4), 418-425.
https://doi.org/10.1093/ajcn/74.4.418

[9]. Metodiewa, D.; Kochman, A.; Karolczak, S. Evidence for antiradical and antioxidant properties of four biologically active N,N‐Diethylaminoethyl ethers of flavaone oximes: A comparison with natural polyphenolic flavonoid rutin action. IUBMB. Life. 1997, 41 (5), 1067-1075.
https://doi.org/10.1080/15216549700202141

[10]. Kumar, S.; Pandey, A. K. Chemistry and Biological Activities of Flavonoids: An Overview. The. Scientific. World. Journal. 2013, 2013 (1), 162750 https://doi.org/10.1155/2013/162750
https://doi.org/10.1155/2013/162750

[11]. Iio, M.; Moriyama, A.; Matsumoto, Y.; Takaki, N.; Fukumoto, M. Inhibition of Xanthine Oxidase by Flavonoids. Agricultural. and. Biological. Chemistry. 1985, 49 (7), 2173-2176.
https://doi.org/10.1080/00021369.1985.10867027

[12]. Bellavia, D.; Dimarco, E.; Costa, V.; Carina, V.; De Luca, A.; Raimondi, L.; Fini, M.; Gentile, C.; Caradonna, F.; Giavaresi, G. Flavonoids in Bone Erosive Diseases: Perspectives in Osteoporosis Treatment. Trends. in. Endocrinology. &. Metabolism. 2021, 32 (2), 76-94.
https://doi.org/10.1016/j.tem.2020.11.007

[13]. van Dam, R. M.; Naidoo, N.; Landberg, R. Dietary flavonoids and the development of type 2 diabetes and cardiovascular diseases. Current. Opinion. in. Lipidology. 2013, 24 (1), 25-33.
https://doi.org/10.1097/MOL.0b013e32835bcdff

[14]. Zheng, Y.; Deng, G.; Chen, D.; Liang, Q.; Guo, R.; Fu, Z. Theoretical studies on the antioxidant activity of pinobanksin and its ester derivatives: Effects of the chain length and solvent. Food. Chemistry. 2018, 240, 323-329.
https://doi.org/10.1016/j.foodchem.2017.07.133

[15]. Zheng, Y.; Deng, G.; Guo, R.; Fu, Z.; Chen, D. The influence of the H5⋯O C4 intramolecular hydrogen-bond (IHB) on the antioxidative activity of flavonoid. Phytochemistry. 2019, 160, 19-24.
https://doi.org/10.1016/j.phytochem.2019.01.011

[16]. Procházková, D.; Boušová, I.; Wilhelmová, N. Antioxidant and prooxidant properties of flavonoids. Fitoterapia. 2011, 82 (4), 513-523.
https://doi.org/10.1016/j.fitote.2011.01.018

[17]. Orhan, I.; Daglia, M.; Nabavi, S.; Loizzo, M.; Sobarzo-Sanchez, E.; Nabavi, S. Flavonoids and Dementia: An Update. CMC. 2015, 22 (8), 1004-1015.
https://doi.org/10.2174/0929867322666141212122352

[18]. Nakajima, A.; Ohizumi, Y.; Yamada, K. Anti-dementia Activity of Nobiletin, a Citrus Flavonoid: A Review of Animal Studies. Clin. Psychopharmacol. Neurosci. 2014, 12 (2), 75-82.
https://doi.org/10.9758/cpn.2014.12.2.75

[19]. Bakhtiari, M.; Panahi, Y.; Ameli, J.; Darvishi, B. Protective effects of flavonoids against Alzheimer's disease-related neural dysfunctions. Biomedicine. &. Pharmacotherapy. 2017, 93, 218-229.
https://doi.org/10.1016/j.biopha.2017.06.010

[20]. Ozcan, T.; Akpinar-Bayizit, A.; Yilmaz-Ersan, L.; Delikanli, B. Phenolics in Human Health. Int. J. Chem. Eng. Appl. IJCEA. 2014, 5 (5), 393-396.
https://doi.org/10.7763/IJCEA.2014.V5.416

[21]. Valavanidis, A.; Vlachogianni, T. Plant Polyphenols. Studies. in. Natural. Products. Chemistry. 2013, 269-295.
https://doi.org/10.1016/B978-0-444-62615-8.00008-4

[22]. Salehi, B.; Quispe, C.; Chamkhi, I.; El Omari, N.; Balahbib, A.; Sharifi-Rad, J.; Bouyahya, A.; Akram, M.; Iqbal, M.; Docea, A. O.; Caruntu, C.; Leyva-Gómez, G.; Dey, A.; Martorell, M.; Calina, D.; López, V.; Les, F. Pharmacological Properties of Chalcones: A Review of Preclinical Including Molecular Mechanisms and Clinical Evidence. Front. Pharmacol. 2021, 11, https://doi.org/10.3389/fphar.2020.592654
https://doi.org/10.3389/fphar.2020.592654

[23]. Dixon, R. A.; Paiva, N. L. Stress-Induced Phenylpropanoid Metabolism. The. Plant. Cell. 1995, 7 (7), 1085.
https://doi.org/10.2307/3870059

[24]. Le Bail, J. C.; Pouget, C.; Fagnere, C.; Basly, J. P.; Chulia, A. J.; Habrioux, G. Chalcones Are Potent Inhibitors of Aromatase and 17beta-Hydroxysteroid Dehydrogenase Activities. Life Sci. 2001, 68 (7), 751-761.
https://doi.org/10.1016/S0024-3205(00)00974-7

[25]. Liu, C.; Murray, J. The Role of Flavonoids in Nodulation Host-Range Specificity: An Update. Plants. 2016, 5 (3), 33.
https://doi.org/10.3390/plants5030033

[26]. Peters, N. K.; Frost, J. W.; Long, S. R. A Plant Flavone, Luteolin, Induces Expression of Rhizobium meliloti Nodulation Genes. Science. 1986, 233 (4767), 977-980.
https://doi.org/10.1126/science.3738520

[27]. Thebti, A.; Meddeb, A.; Ben Salem, I.; Bakary, C.; Ayari, S.; Rezgui, F.; Essafi-Benkhadir, K.; Boudabous, A.; Ouzari, H. Antimicrobial Activities and Mode of Flavonoid Actions. Antibiotics. 2023, 12 (2), 225.
https://doi.org/10.3390/antibiotics12020225

[28]. Hossain, M. M.; Kawamura, Y.; Yamashita, K.; Tsukayama, M. Microwave-assisted regioselective synthesis of natural 6-prenylpolyhydroxyisoflavones and their hydrates with hypervalent iodine reagents. Tetrahedron. 2006, 62 (36), 8625-8635.
https://doi.org/10.1016/j.tet.2006.06.066

[29]. Giguere, R. J.; Bray, T. L.; Duncan, S. M.; Majetich, G. Application of Commercial Microwave Ovens to Organic Synthesis. Tetrahedron Lett. 1986, 27 (41), 4945-4948.
https://doi.org/10.1016/S0040-4039(00)85103-5

[30]. Rahman, M. S.; Alam, S. S.; Happy, K.; Hossain, M. M.; Islam, M. K.; Biswas, F. B. Eco-friendly and simple synthesis of some non-natural flavones through chalcones. Eur. J. Chem. 2018, 9 (3), 236-240.
https://doi.org/10.5155/eurjchem.9.3.236-240.1732

[31]. Happy, K.; Khan, S.; Liza, U. A.; Mimi, A.; Islam, M. R.; Hossain, M. M. Synthesis of some 2-azitidinones (β-lactams) as antibiotic mimics and screening of their antimicrobial activity. J. Bangladesh. Acad. Sci. 2024, 48 (1), 111-119.
https://doi.org/10.3329/jbas.v48i1.71538

[32]. Vasveliya, H. B.; Pandya, J. H.; Tilavat, H. K.; Jivani, A. J. Synthesis and Catalytic Optimization of Quinoline-Pyridine Hybrids as New Mannich Bases: An Effective Structural Motif in the Treatment of Tuberculosis. Russ. J. Bioorg. Chem. 2025, 51 (4), 1752-1761.
https://doi.org/10.1134/S1068162024606712

[33]. Sasidharan, S.; Yoga, L.; Yuet, K.; Jothy, S. Screening Methods in the Study of Fungicidal Property of Medicinal Plants. Fungicides. for. Plant. and. Animal. Diseases. 2012, https://doi.org/10.5772/25714
https://doi.org/10.5772/25714

[34]. Karak, P. Biological activities of flavonoids: An overview. Int. J. Pharm. Sci. Res. 2019, 10 (4), 1567-1574. https://doi.org/10.13040/IJPSR.0975-8232.10(4).1567-74
https://doi.org/10.13040/IJPSR.0975-8232.10(4).1567-74

[35]. Mohammadi Ziarani, G.; Kheilkordi, Z.; Mohajer, F. Recent advances in the application of acetophenone in heterocyclic compounds synthesis. J. Iran. Chem. Soc. 2019, 17 (2), 247-282.
https://doi.org/10.1007/s13738-019-01774-4

[36]. Khan, A.; Jain, A.; Solank, M. Synthesis and Biological Evaluation of Newly Synthesized Halogenated Flavones. Orient. J. Chem. 2024, 40 (2), 562-568.
https://doi.org/10.13005/ojc/400231

Supporting Agencies

Department of Chemistry, Faculty of Mathematical and Physical Sciences, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
Most read articles by the same author(s)

Most read articles by the same author(s)

TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

License Terms

by-nc

Copyright © 2025 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).