European Journal of Chemistry 2011, 2(1), 1-7. doi:10.5155/eurjchem.2.1.1-7.322

Structural and electronic effects of the C2’ substituent in 1,4–benzodiazepines


Lígia Rebelo Gomes (1) , Luís Manuel Neves Belchior Faia Santos (2) , José Beleza (3) , John Nicolson Low (4,*)

(1) CIAGEB-Faculdade de Ciências de Saúde, Escola Superior de Saúde da UFP, Universidade Fernando Pessoa, Porto, P-4200-150, Portugal
(2) Centro de Investigação em Química, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, P-4169-007, Portugal
(3) CIAGEB-Faculdade de Ciências de Saúde, Escola Superior de Saúde da UFP, Universidade Fernando Pessoa, Porto, P-4200-150, Portugal
(4) Department of Chemistry, University of Aberdeen, AB24 3UE, Scotland
(*) Corresponding Author

Received: 17 Nov 2010, Accepted: 11 Jan 2011, Published: 28 Mar 2011

Abstract


Benzodiazepines are drugs used for treatment of several central nervous system disorders, such as anxiety and sleep. In spite of their wide and popular usage in clinics, the mechanism explaining why a certain pharmacological activity is superimposed onto another for a given benzodiazepine remains unclear. The knowledge of the conformation of benzodiazepines and their electronic charge distribution at molecular surfaces may give new insights into the pharmaco-benzodiazepine receptor interactions, contributing to the improvement of the existing models. In the present study, the solid state geometric and conformational parameters of the available X-ray benzodiazepine structures were analyzed and reviewed. The electronic features of two groups of benzodiazepines with different substituents at C7 and C2’ positions were studied by DFT quantum chemical calculations. The conformations of the molecules with optimized geometry were also analyzed. The relative charge distribution around the benzodiazepinic rings and electrostatic potential mapped on electronic density surfaces were obtained. The ring geometric parameters for the diazepine moiety in 1,4-benzodiazepines, do not vary significantly except for a few compounds in which steric and/or intermolecular interactions play a part. The benzodiazepine ring assumes a pseudo-symmetrical boat conformation and the torsion angle around the C5-Ph bond varies depending on the nature of the substituent on C2’. Also, the presence of the nitro or chloride substituent on the C7 position and the presence of a fluorine atom on the C2’ position significantly alter the relative charge distributions at the attached carbon atoms and the topology of the surface electrostatic potential.

2_1_1_7_800


Keywords


Benzodiazepine; DFT; Structure characterization; X-ray; Fluoro; Isoelectronic potential surfaces

Full Text:

PDF /    /


DOI: 10.5155/eurjchem.2.1.1-7.322

Article Metrics


This Abstract was viewed 732 times | PDF Article downloaded 289 times

Citations

/


[1]. Archimede Rotondo, Roberta Ettari, Maria Zappalà, Carlo De Micheli, Enrico Rotondo
NMR characterization and conformational analysis of a potent papain-family cathepsin L-like cysteine protease inhibitor with different behaviour in polar and apolar media
Journal of Molecular Structure  1076, 337, 2014
DOI: 10.1016/j.molstruc.2014.07.046
/


References

[1]. Abraham, D. J. Nervous System Agents - Burger’s Medicinal Chemistry & Drug Discovery – 6th Ed., Wiley Interscience, John Wiley and Sons; Department of Medicinal Chemistry, School of Pharmacy Virginia Commonwealth, 2003, Vol. 6.

[2]. Kessler, R. C.; Frank, R. G. Psychol. Med. 1997, 27, 861-873.
doi:10.1017/S0033291797004807
PMid:9234464

[3]. Walley, E. J.; Beebe D. K.; Clark, J. L. Am. Fam. Physician. 1994, 50, 1745–1753.
PMid:7977004

[4]. Van Ameringen, M.; Mancini, C.; Farvolden, P.; Oakman J. Curr. Psychiatry Rep. 2000, 2, 358–366.
doi:10.1007/s11920-000-0082-7
PMid:11122982

[5]. Davidson, J. R.; Potts, N. L. S.; Richichi, E. A. J. Clin. Psychopharmacol. 1993, 13, 423–428.
doi:10.1097/00004714-199312000-00008
PMid:8120156

[6]. Gelernter, C. S.; Uhde, T. W.; Cimbolic, Peter; Arnkoff, D. B.; Vittone, Bernard J.; Tancer, M. E.; Bartko, J. J. Arch. Gen. Psychiatry. 1991, 48, 938–945.

[7]. Sternbach, L. H. J. Clin. Psychopharmacol. 1994, 14, 170–179.

[8]. Sanger, D. J.; Benavides, J.; Perrault, G.; Morel, E.; Cohen, C.; Joly, D.; Zivkovic, B. Neurosci. Biobehav. Rev. 1994, 18, 355–372.
doi:10.1016/0149-7634(94)90049-3

[9]. Rudolph, U.; Crestani, F.; Möhler, H. Trends Pharmacol. Sci. 1999, 22, 188–194.
doi:10.1016/S0165-6147(00)01646-1

[10]. Mölher, H.; Crestani, F.; Rudolph, U. Curr. Opin. Pharmacol. 2001, 1, 22–25.
doi:10.1016/S1471-4892(01)00008-X

[11]. Da Settimo, F.; Taliani, S.; Trincavelli, M. L.; Montali, M.; Martini, C. Curr. Med. Chem. 2007, 14, 2680–2701.
doi:10.2174/092986707782023190
PMid:17979718

[12]. Atack, J. R. Expert Opin. Investia. Drugs. 2005, 14, 601–618.
doi:10.1517/13543784.14.5.601
PMid:15926867

[13]. Allen, F. H. Acta Cryst. 2002, B58, 380–388.

[14]. Williams D. B.; Akabas M. H. Mol. Pharmacol. 2000, 58, 1129–1136.
PMid:11040062

[15]. Gaussian 03. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A. Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.;. Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T. Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian, Inc., Pittsburgh PA, 2003.

[16]. Becke A. D. J. Chem. Phys. 1997, 107, 8554–8560.

[17]. Lee, C.; Yang, W.; Parr, G. R. Phys. Rev. B: Condens. Matter Mater. Phys. 1998, 37, 785–789.
doi:10.1103/PhysRevB.37.785

[18]. Hehre, W. J.; Random L.; Schleyer P. V. R.; Pople J. A. Ab Initio Molecular Orbital Theory, Wiley, New York, 1986.

[19]. Carpenter, J. E.; Weinhold, F. J. Mol. Struct. Theochem. 1998, 169, 41-62.
doi:10.1016/0166-1280(88)80248-3

[20]. GaussView 3.0. Dennington II, R.; Keith, T.; Millam, J. GaussView, Version 4.1.2, Semichem., Inc., Shawnee Mission, KS, 2007. Available from: <http://www.gaussian.com>.

[21]. Razgulin, A. V.; Mecozzi, S. J. Med. Chem. 2006, 49, 7902–7906.
doi:10.1021/jm0600702
PMid:17181174

[22]. O’Hagan, D. Chem. Soc. Rev. 2008, 37, 308–319.
doi:10.1039/b711844a
PMid:18197347

[23]. Clayton, T.; Chen, J. L.; Ernst, M.; Richter, L.; Cromer, B. A.; Morton, C. J.; Ng, H.; Kaczorowski, C. C.; Helmstetter, F. J.; Furtmüller, R.; Ecker, G.; Parker, M. W.; Sieghart, W.; Cook, J. M. Curr. Med. Chem. 2007, 14, 26, 2755–2775.
doi:10.2174/092986707782360097
PMid:18045122

[24]. Meréndez, J. C.; Avendaño C. Optimizacion de un protótipo. Correlationes cualitativas estrutura química – actividad biológica, in Avendaño C: Introdution a la química Farmaceutica, 2nd Ed. McGraw Hill, Madrid, 2001, pp. 87–88.

[25]. Breimer, D. D.; Jochemsen, R. Br. J. Clin. Pharmacol. 1983, 16, 277S–278S.
PMid:6140947 PMCid:1428230

[26]. Greenblatt, D. J.; Shader, R. I.; Koch-Weser, J. Ann. of Intern. Med. 1975, 83, 237–241.
PMid:238445

[27]. Berlin, A.; Dahlstrom, H. Eur. J. Clin. Pharmacol. 1975, 9, 155–159.
doi:10.1007/BF00614012
PMid:1233263

[28]. Morishita, S. Hum. Psychopharmacol. 2009, 24, 191–198.
doi:10.1002/hup.1015
PMid:19330803

[29]. Mattila, M. A.; Larni, H. M. Drugs, 1980, 20, 353–374.
doi:10.2165/00003495-198020050-00002
PMid:6108205

[30]. Hevers, W.; Lueddens, H. Mol. Neurobiol. 1998, 18, 35–86.
doi:10.1007/BF02741459
PMid:9824848

[31]. Hanson, S. M.; Czajkowski, C. J. Neurosci, 2008, 28, 3490–3499.
doi:10.1523/JNEUROSCI.5727-07.2008
PMid:18367615 PMCid:2410040


How to cite


Gomes, L.; Santos, L.; Beleza, J.; Low, J. Eur. J. Chem. 2011, 2(1), 1-7. doi:10.5155/eurjchem.2.1.1-7.322
Gomes, L.; Santos, L.; Beleza, J.; Low, J. Structural and electronic effects of the C2’ substituent in 1,4–benzodiazepines. Eur. J. Chem. 2011, 2(1), 1-7. doi:10.5155/eurjchem.2.1.1-7.322
Gomes, L., Santos, L., Beleza, J., & Low, J. (2011). Structural and electronic effects of the C2’ substituent in 1,4–benzodiazepines. European Journal of Chemistry, 2(1), 1-7. doi:10.5155/eurjchem.2.1.1-7.322
Gomes, Lígia, Luís Manuel Neves Belchior Faia Santos, José Beleza, & John Nicolson Low. "Structural and electronic effects of the C2’ substituent in 1,4–benzodiazepines." European Journal of Chemistry [Online], 2.1 (2011): 1-7. Web. 15 Nov. 2019
Gomes, Lígia, Santos, Luís, Beleza, José, AND Low, John. "Structural and electronic effects of the C2’ substituent in 1,4–benzodiazepines" European Journal of Chemistry [Online], Volume 2 Number 1 (28 March 2011)

DOI Link: https://doi.org/10.5155/eurjchem.2.1.1-7.322

Refbacks

  • There are currently no refbacks.




Copyright (c)




© Copyright 2019  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2019 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 4614 Lavista road, Tucker, GA, 30084, USA. Registered in USA.