European Journal of Chemistry

Biogenic synthesis of selenium nanoparticles using Hibiscus esculentus L. extract: Catalytic degradation of organic dye and its anticancer, antibacterial and antifungal activities

Crossmark


Main Article Content

Mohammad Ali Ebrahimzadeh
Mina Moradsomarein
Fatemeh Sadeghi Lalerdi
Seyedeh Roya Alizadeh

Abstract

In this work, we develop the synthesis of selenium nanoparticles (B@SeNPs) using a green method using the aqueous extract of Hibiscus esculentus L. Various techniques were used to characterize bio-synthesized B@SeNPs. The mixture color was clearly changed to reddish at 45-50 °C and the extract pH = 6. According to Fourier transform infrared spectroscopy (FT-IR), the B@SeNPs were produced, capped, and stabilized using biomolecules found in plant extracts. The energy dispersive X-ray (EDX) analysis profile revealed an atomic Se signal (1.39 mV). The powder X-ray diffraction (PXRD) pattern confirmed the hexagonal phase crystalline form of B@SeNPs. The zeta potential for SeNPs was determined to be -51.3 mV. Scanning electron microscope (SEM) and transmission electron microscopy (TEM) micrographs revealed spherical Se particles with sizes of roughly 62 nm. Furthermore, B@SeNPs can degrade methylene blue dye by 98.3% at 21 min with a rate constant of 0.1023 min-1 in the presence of NaBH4. In biological evaluation, the synthesized nanoparticles have been proven to be effective against two human cancers (AGS and MCF-7 cells) with IC50 values of 20.46 and 88.43 µg/mL, respectively. Additionally, B@SeNPs showed high safety in the Beas cell line (normal) at 123 µg/mL as the highest concentration. The biofabricated SeNPs had a moderate antibacterial effect against ATCC and multidrug-resistant clinical isolates. They had no antifungal activity against the tested fungus strains except C. albicans (IFRC 1873), with a MIC value of 138.75 µg/mL. Finally, the green-synthesized B@SeNPs could be a contender for further testing as a chemotherapeutic agent in the treatment of some human cancers.


icon graph This Abstract was viewed 666 times | icon graph Article PDF downloaded 361 times

How to Cite
(1)
Ebrahimzadeh, M. A.; Moradsomarein, M.; Lalerdi, F. S.; Alizadeh, S. R. Biogenic Synthesis of Selenium Nanoparticles Using Hibiscus Esculentus L. Extract: Catalytic Degradation of Organic Dye and Its Anticancer, Antibacterial and Antifungal Activities. Eur. J. Chem. 2023, 14, 144-154.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Hassanien, R.; Abed-Elmageed, A. A. I.; Husein, D. Z. Eco‐friendly approach to synthesize selenium nanoparticles: Photocatalytic degradation of sunset yellow azo dye and anticancer activity. ChemistrySelect 2019, 4, 9018-9026.
https://doi.org/10.1002/slct.201901267

[2]. Vuppala, V.; Motappa, M. G.; Venkata, S. S.; Sadashivaiah, P. H. Photocatalytic degradation of methylene blue using a zinc oxide-cerium oxide catalyst. Eur. J. Chem. 2012, 3, 191-195.
https://doi.org/10.5155/eurjchem.3.2.191-195.564

[3]. Tripathi, R. M.; Hameed, P.; Rao, R. P.; Shrivastava, N.; Mittal, J.; Mohapatra, S. Biosynthesis of highly stable fluorescent selenium nanoparticles and the evaluation of their photocatalytic degradation of dye. Bionanoscience 2020, 10, 389-396.
https://doi.org/10.1007/s12668-020-00718-0

[4]. Kandisa, R. V.; Saibaba KV, N. Dye removal by adsorption: A review. J. Bioremediat. Biodegrad. 2016, 07, 371.
https://doi.org/10.4172/2155-6199.1000371

[5]. Jassim, A. M. N.; Al-Kazaz, F. F. M. Biochemical study for gold and silver nanoparticles on thyroid hormone levels in saliva of patients with chronic renal failure. Eur. J. Chem. 2013, 4, 353-359.
https://doi.org/10.5155/eurjchem.4.4.353-359.853

[6]. Agarwal, M.; Singh Bhadwal, A.; Kumar, N.; Shrivastav, A.; Raj Shrivastav, B.; Pratap Singh, M.; Zafar, F.; Mani Tripathi, R. Catalytic degradation of methylene blue by biosynthesised copper nanoflowers using F. benghalensis leaf extract. IET Nanobiotechnol. 2016, 10, 321-325.
https://doi.org/10.1049/iet-nbt.2015.0098

[7]. Tripathi, R. M.; Shrivastav, B. R.; Shrivastav, A. Antibacterial and catalytic activity of biogenic gold nanoparticles synthesised by Trichoderma harzianum. IET Nanobiotechnol. 2018, 12, 509-513.
https://doi.org/10.1049/iet-nbt.2017.0105

[8]. Shirzadi-Ahodashti, M.; Mizwari, Z. M.; Hashemi, Z.; Rajabalipour, S.; Ghoreishi, S. M.; Mortazavi-Derazkola, S.; Ebrahimzadeh, M. A. Discovery of high antibacterial and catalytic activities of biosynthesized silver nanoparticles using C. fruticosus (CF-AgNPs) against multi-drug resistant clinical strains and hazardous pollutants. Environ. Technol. Innov. 2021, 23, 101607.
https://doi.org/10.1016/j.eti.2021.101607

[9]. Shirzadi-Ahodashti, M.; Hashemi, Z.; Mortazavi, Y.; Khormali, K.; Mortazavi-Derazkola, S.; Ebrahimzadeh, M. A. Discovery of high antibacterial and catalytic activities against multi-drug resistant clinical bacteria and hazardous pollutants by biosynthesized of silver nanoparticles using Stachys inflata extract (AgNPs@SI). Colloids Surf. A Physicochem. Eng. Asp. 2021, 617, 126383.
https://doi.org/10.1016/j.colsurfa.2021.126383

[10]. Hashemi, Z.; Shirzadi-Ahodashti, M.; Mortazavi-Derazkola, S.; Ebrahimzadeh, M. A. Sustainable biosynthesis of metallic silver nanoparticles using barberry phenolic extract: Optimization and evaluation of photocatalytic, in vitro cytotoxicity, and antibacterial activities against multidrug-resistant bacteria. Inorg. Chem. Commun. 2022, 139, 109320.
https://doi.org/10.1016/j.inoche.2022.109320

[11]. Rayman, M. P. Selenium and human health. Lancet 2012, 379, 1256-1268.
https://doi.org/10.1016/S0140-6736(11)61452-9

[12]. Pyrzynska, K.; Sentkowska, A. Biosynthesis of selenium nanoparticles using plant extracts. J. Nanostructure Chem. 2022, 12, 467-480.
https://doi.org/10.1007/s40097-021-00435-4

[13]. Krishnan, M.; Ranganathan, K.; Maadhu, P.; Thangavelu, P.; Kundan, S.; Arjunan, N. Leaf extract of Dillenia indica as a source of selenium nanoparticles with larvicidal and antimicrobial potential toward vector mosquitoes and pathogenic microbes. Coatings 2020, 10, 626.
https://doi.org/10.3390/coatings10070626

[14]. Alagesan, V.; Venugopal, S. Green synthesis of selenium nanoparticle using leaves extract of Withania somnifera and its biological applications and photocatalytic activities. Bionanoscience 2019, 9, 105-116.
https://doi.org/10.1007/s12668-018-0566-8

[15]. Ameri, A.; Shakibaie, M.; Ameri, A.; Faramarzi, M. A.; Amir-Heidari, B.; Forootanfar, H. Photocatalytic decolorization of bromothymol blue using biogenic selenium nanoparticles synthesized by terrestrial actinomycete Streptomyces griseobrunneus strain FSHH12. Desalination Water Treat. 2016, 57, 21552-21563.
https://doi.org/10.1080/19443994.2015.1124349

[16]. Kumar, A.; Prasad, B.; Manjhi, J.; Prasad, K. S. Antioxidant activity of selenium nanoparticles biosynthesized using a cell-free extract of Geobacillus. Toxicol. Environ. Chem. 2020, 102, 556-567.
https://doi.org/10.1080/02772248.2020.1829623

[17]. Amiri, H.; Hashemy, S. I.; Sabouri, Z.; Javid, H.; Darroudi, M. Green synthesized selenium nanoparticles for ovarian cancer cell apoptosis. Res. Chem. Intermed. 2021, 47, 2539-2556.
https://doi.org/10.1007/s11164-021-04424-8

[18]. Anu, K.; Devanesan, S.; Prasanth, R.; AlSalhi, M. S.; Ajithkumar, S.; Singaravelu, G. Biogenesis of selenium nanoparticles and their anti-leukemia activity. J. King Saud Univ. Sci. 2020, 32, 2520-2526.
https://doi.org/10.1016/j.jksus.2020.04.018

[19]. Vahidi, H.; Barabadi, H.; Saravanan, M. Emerging selenium nanoparticles to combat cancer: A systematic review. J. Cluster Sci. 2020, 31, 301-309.
https://doi.org/10.1007/s10876-019-01671-z

[20]. Wadhwani, S.; Gorain, M.; Banerjee, P.; Shedbalkar, U.; Singh, R.; Kundu, G.; Chopade, B. A. Green synthesis of selenium nanoparticles using Acinetobacter sp. SW30: optimization, characterization and its anticancer activity in breast cancer cells. Int. J. Nanomedicine 2017, 12, 6841-6855.
https://doi.org/10.2147/IJN.S139212

[21]. Pandey, S.; Awasthee, N.; Shekher, A.; Rai, L. C.; Gupta, S. C.; Dubey, S. K. Biogenic synthesis and characterization of selenium nanoparticles and their applications with special reference to antibacterial, antioxidant, anticancer and photocatalytic activity. Bioprocess Biosyst. Eng. 2021, 44, 2679-2696.
https://doi.org/10.1007/s00449-021-02637-0

[22]. Ebrahimzadeh, M. A.; Nabavi, S. F.; Nabavi, S. M.; Eslami, B. Antihypoxic and antioxidant activity of Hibiscus esculentus seeds. Grasas Aceites 2010, 61, 30-36.
https://doi.org/10.3989/gya.053809

[23]. Sorapong, B. Okra (Abelmoschus esculentus (L.) Moench) as a valuable vegetable of the world. Ratar. Povrt. 2012, 49, 105-112.
https://doi.org/10.5937/ratpov49-1172

[24]. Saifullah, M.; Rabbani, M. G. Evaluation and characterization of okra (Abelmoschus esculentus L. Moench.) genotypes. SAARC Journal of Agriculture 2009, 7, 91-98.

[25]. Shui, G.; Peng, L. L. An improved method for the analysis of major antioxidants of Hibiscus esculentus Linn. J. Chromatogr. A 2004, 1048, 17-24.
https://doi.org/10.1016/S0021-9673(04)01187-2

[26]. Chowdhury, N. R.; MacGregor-Ramiasa, M.; Zilm, P.; Majewski, P.; Vasilev, K. "Chocolate" silver nanoparticles: Synthesis, antibacterial activity and cytotoxicity. J. Colloid Interface Sci. 2016, 482, 151-158.
https://doi.org/10.1016/j.jcis.2016.08.003

[27]. Mortazavi-Derazkola, S.; Ebrahimzadeh, M. A.; Amiri, O.; Goli, H. R.; Rafiei, A.; Kardan, M.; Salavati-Niasari, M. Facile green synthesis and characterization of Crataegus microphylla extract-capped silver nanoparticles (CME@Ag-NPs) and its potential antibacterial and anticancer activities against AGS and MCF-7 human cancer cells. J. Alloys Compd. 2020, 820, 153186.
https://doi.org/10.1016/j.jallcom.2019.153186

[28]. Hashemi, Z.; Mohammadyan, M.; Naderi, S.; Fakhar, M.; Biparva, P.; Akhtari, J.; Ebrahimzadeh, M. A. Green synthesis of silver nanoparticles using Ferula persica extract (Fp-NPs): Characterization, antibacterial, antileishmanial, and in vitro anticancer activities. Mater. Today Commun. 2021, 27, 102264.
https://doi.org/10.1016/j.mtcomm.2021.102264

[29]. Shirzadi-Ahodashti, M.; Mizwari, Z. M.; Mohammadi-Aghdam, S.; Ahmadi, S.; Ali Ebrahimzadeh, M.; Mortazavi-Derazkola, S. Optimization and evaluation of anticancer, antifungal, catalytic, and antibacterial activities: Biosynthesis of spherical-shaped gold nanoparticles using Pistacia vera hull extract (AuNPs@PV). Arab. J. Chem. 2023, 16, 104423.
https://doi.org/10.1016/j.arabjc.2022.104423

[30]. Nidhin; Saneha; Hans, S.; Varghese, A.; Fatima, Z.; Hameed, S. Studies on the antifungal activity of biotemplated gold nanoparticles over Candida albicans. Mater. Res. Bull. 2019, 119, 110563.
https://doi.org/10.1016/j.materresbull.2019.110563

[31]. Alizadeh, S. R.; Seyedabadi, M.; Montazeri, M.; Khan, B. A.; Ebrahimzadeh, M. A. Allium paradoxum extract mediated green synthesis of SeNPs: Assessment of their anticancer, antioxidant, iron chelating activities, and antimicrobial activities against fungi, ATCC bacterial strains, Leishmania parasite, and catalytic reduction of methylene blue. Mater. Chem. Phys. 2023, 296, 127240.
https://doi.org/10.1016/j.matchemphys.2022.127240

[32]. Hashemi, Z.; Mizwari, Z. M.; Mohammadi-Aghdam, S.; Mortazavi-Derazkola, S.; Ali Ebrahimzadeh, M. Sustainable green synthesis of silver nanoparticles using Sambucus ebulus phenolic extract (AgNPs@SEE): Optimization and assessment of photocatalytic degradation of methyl orange and their in vitro antibacterial and anticancer activity. Arab. J. Chem. 2022, 15, 103525.
https://doi.org/10.1016/j.arabjc.2021.103525

[33]. Al Jahdaly, B. A.; Al-Radadi, N. S.; Eldin, G. M. G.; Almahri, A.; Ahmed, M. K.; Shoueir, K.; Janowska, I. Selenium nanoparticles synthesized using an eco-friendly method: dye decolorization from aqueous solutions, cell viability, antioxidant, and antibacterial effectiveness. J. Mater. Res. Technol. 2021, 11, 85-97.
https://doi.org/10.1016/j.jmrt.2020.12.098

[34]. Hashemi, Z.; Ebrahimzadeh, M. A.; Biparva, P.; Mortazavi-Derazkola, S.; Goli, H. R.; Sadeghian, F.; Kardan, M.; Rafiei, A. Biogenic silver and zero-Valent iron nanoparticles by Feijoa: Biosynthesis, characterization, cytotoxic, antibacterial and antioxidant activities. Anticancer Agents Med. Chem. 2020, 20, 1673-1687.
https://doi.org/10.2174/1871520620666200619165910

[35]. Ramamurthy, C.; Sampath, K. S.; Arunkumar, P.; Kumar, M. S.; Sujatha, V.; Premkumar, K.; Thirunavukkarasu, C. Green synthesis and characterization of selenium nanoparticles and its augmented cytotoxicity with doxorubicin on cancer cells. Bioprocess Biosyst. Eng. 2013, 36, 1131-1139.
https://doi.org/10.1007/s00449-012-0867-1

[36]. Menon, S.; Agarwal, H.; Shanmugam, V. K. Catalytical degradation of industrial dyes using biosynthesized selenium nanoparticles and evaluating its antimicrobial activities. Sustain. Environ. Res. 2021, 31, 2.
https://doi.org/10.1186/s42834-020-00072-6

[37]. Saranya, T.; Ramya, S.; Kavithaa, K.; Paulpandi, M.; Cheon, Y.-P.; Harysh Winster, S.; Balachandar, V.; Narayanasamy, A. Green synthesis of selenium nanoparticles using Solanum nigrum fruit extract and its anti-cancer efficacy against triple negative breast cancer. J. Cluster Sci. 2022, https://doi.org/10.1007/s10876-022-02334-2.
https://doi.org/10.1007/s10876-022-02334-2

[38]. Abbas, H. S.; Abou Baker, D. H.; Ahmed, E. A. Cytotoxicity and antimicrobial efficiency of selenium nanoparticles biosynthesized by Spirulina platensis. Arch. Microbiol. 2021, 203, 523-532.
https://doi.org/10.1007/s00203-020-02042-3

[39]. Fouda, A.; Al-Otaibi, W. A.; Saber, T.; AlMotwaa, S. M.; Alshallash, K. S.; Elhady, M.; Badr, N. F.; Abdel-Rahman, M. A. Antimicrobial, antiviral, and in-vitro cytotoxicity and mosquitocidal activities of Portulaca oleracea-based green synthesis of selenium nanoparticles. J. Funct. Biomater. 2022, 13, 157.
https://doi.org/10.3390/jfb13030157

[40]. Srivastava, N.; Mukhopadhyay, M. Biosynthesis and structural characterization of selenium nanoparticles mediated by Zooglea ramigera. Powder Technol. 2013, 244, 26-29.
https://doi.org/10.1016/j.powtec.2013.03.050

[41]. Kokila, K.; Elavarasan, N.; Sujatha, V. Diospyros montana leaf extract-mediated synthesis of selenium nanoparticles and their biological applications. New J. Chem. 2017, 41, 7481-7490.
https://doi.org/10.1039/C7NJ01124E

[42]. Mosallam, F. M.; El-Sayyad, G. S.; Fathy, R. M.; El-Batal, A. I. Biomolecules-mediated synthesis of selenium nanoparticles using Aspergillus oryzae fermented Lupin extract and gamma radiation for hindering the growth of some multidrug-resistant bacteria and pathogenic fungi. Microb. Pathog. 2018, 122, 108-116.
https://doi.org/10.1016/j.micpath.2018.06.013

[43]. Sreekanth, T. V. M.; Pandurangan, M.; Kim, D. H.; Lee, Y. R. Green synthesis: In-vitro anticancer activity of silver nanoparticles on human cervical cancer cells. J. Cluster Sci. 2016, 27, 671-681.
https://doi.org/10.1007/s10876-015-0964-9

[44]. Ganapuram, B. R.; Alle, M.; Dadigala, R.; Dasari, A.; Maragoni, V.; Guttena, V. Catalytic reduction of methylene blue and Congo red dyes using green synthesized gold nanoparticles capped by salmalia malabarica gum. Int. Nano Lett. 2015, 5, 215-222.
https://doi.org/10.1007/s40089-015-0158-3

[45]. Rawat, V.; Sharma, A.; Bhatt, V. P.; Pratap Singh, R.; Maurya, I. K. Sunlight mediated green synthesis of silver nanoparticles using Polygonatum graminifolium leaf extract and their antibacterial activity. Mater. Today 2020, 29, 911-916.
https://doi.org/10.1016/j.matpr.2020.05.274

[46]. San Keskin, N. O.; Akbal Vural, O.; Abaci, S. Biosynthesis of noble selenium nanoparticles from Lysinibacillus sp. NOSK for antimicrobial, antibiofilm activity, and biocompatibility. Geomicrobiol. J. 2020, 37, 919-928.
https://doi.org/10.1080/01490451.2020.1799264

[47]. Boroumand, S.; Safari, M.; Shaabani, E.; Shirzad, M.; Faridi-Majidi, R. Selenium nanoparticles: synthesis, characterization and study of their cytotoxicity, antioxidant and antibacterial activity. Mater. Res. Express 2019, 6, 0850d8.
https://doi.org/10.1088/2053-1591/ab2558

[48]. Menon, S.; Agarwal, H.; Rajeshkumar, S.; Jacquline Rosy, P.; Shanmugam, V. K. Investigating the antimicrobial activities of the biosynthesized selenium nanoparticles and its statistical analysis. Bionanoscience 2020, 10, 122-135.
https://doi.org/10.1007/s12668-019-00710-3

[49]. Shoeibi, S.; Mashreghi, M. Biosynthesis of selenium nanoparticles using Enterococcus faecalis and evaluation of their antibacterial activities. J. Trace Elem. Med. Biol. 2017, 39, 135-139.
https://doi.org/10.1016/j.jtemb.2016.09.003

[50]. Shakibaie, M.; Salari Mohazab, N.; Ayatollahi Mousavi, S. A. Antifungal Activity of Selenium Nanoparticles Synthesized by Bacillus species Msh-1 Against Aspergillus fumigatus and Candida albicans. Jundishapur J. Microbiol. 2015, 8, e26381.
https://doi.org/10.5812/jjm.26381

[51]. Shahabadi, N.; Zendehcheshm, S.; Khademi, F. Selenium nanoparticles: Synthesis, in-vitro cytotoxicity, antioxidant activity and interaction studies with ct-DNA and HSA, HHb and Cyt c serum proteins. Biotechnol. Rep. (Amst.) 2021, 30, e00615.
https://doi.org/10.1016/j.btre.2021.e00615

[52]. Saha, J.; Begum, A.; Mukherjee, A.; Kumar, S. A novel green synthesis of silver nanoparticles and their catalytic action in reduction of Methylene Blue dye. Sustain. Environ. Res. 2017, 27, 245-250.
https://doi.org/10.1016/j.serj.2017.04.003

[53]. Cittrarasu, V.; Kaliannan, D.; Dharman, K.; Maluventhen, V.; Easwaran, M.; Liu, W. C.; Balasubramanian, B.; Arumugam, M. Green synthesis of selenium nanoparticles mediated from Ceropegia bulbosa Roxb extract and its cytotoxicity, antimicrobial, mosquitocidal and photocatalytic activities. Sci. Rep. 2021, 11, 1032.
https://doi.org/10.1038/s41598-020-80327-9

Supporting Agencies

This research was supported by a grant from the research council of Mazandaran University of Medical Sciences, Iran (Grant No. 10555).
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).