European Journal of Chemistry 2023, 14(2), 223-230 | doi: https://doi.org/10.5155/eurjchem.14.2.223-230.2403 | Get rights and content

Issue cover




Crossmark

  Open Access OPEN ACCESS | Open Access PEER-REVIEWED | RESEARCH ARTICLE | DOWNLOAD PDF | VIEW FULL-TEXT PDF | TOTAL VIEWS

Green synthesis of gold nanoparticles using Sambucus ebulus fruit extract, characterization, and antileishmanial, antibacterial, antioxidant, and photocatalytic activities


Mohammad Ali Ebrahimzadeh (1) orcid , Seyedeh Roya Alizadeh (2) orcid , Zahra Hashemi (3,*) orcid

(1) Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Mazandaran, Iran
(2) Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Mazandaran, Iran
(3) Department of Medicinal Chemistry, Faculty of Pharmacy, Ayatollah Amoli Branch, Islamic Azad University, Amol, Mazandaran, Iran
(*) Corresponding Author

Received: 24 Dec 2022 | Revised: 07 Feb 2023 | Accepted: 01 Mar 2023 | Published: 30 Jun 2023 | Issue Date: June 2023

Abstract


In this study, gold nanoparticles were synthesized using the fruit extract of Sambucus ebulus (S. ebulus) as a reducing, capping, and stabilizing agent. Biogenic synthesis of gold nanoparticles (Au nanoparticles) was accomplished using S. ebulus fruit extract in the presence of hydrogen tetrachloroaurate(III) trihydrate at a temperature of 65 °C and the solution stirred at 400 rpm. The characterization of the synthesized nanoparticles (SE-AuNPs) was performed using different analytical methods, such as scanning electron microscopy (FE-SEM), energy dispersion X-ray spectroscopy (EDS), Fourier transform infrared (FT-IR), X-ray diffraction analysis (XRD), and UV-vis spectroscopy. A strong absorption peak at 565 nm confirmed the formation of the gold nanoparticle. On the basis of the electron microscopy results, AuNPs were mostly spherical with an average size of 116.2 nm. The cubic crystalline structure of the prepared nanoparticles was confirmed using the XRD pattern and the average crystallite size was obtained at 28.471 nm. FT-IR analysis confirmed the presence of functional groups in the plant extract for the synthesis of nanoparticles. SE-AuNPs showed good antibacterial activity against Gram-positive and Gram-negative bacteria tested and exhibited potent antileishmanial activity. Furthermore, SE-AuNPs showed excellent antioxidant activity that inhibited DPPH radicals with an IC50 value of 21.976 µg/mL. The prepared AuNPs acted to degrade methyl orange (MO), which was performed in sodium borohydride and visible light.


Announcements


Our editors have decided to support scientists to publish their manuscripts in European Journal of Chemistry without any financial constraints.

1- The article processing fee will not be charged from the articles containing the single-crystal structure characterization or a DFT study between September 15, 2023 and October 31, 2023 (Voucher code: FALL2023).

2. A 50% discount will be applied to the article processing fee for submissions made between September 15, 2023 and October 31, 2023 by authors who have at least one publication in the European Journal of Chemistry (Voucher code: AUTHOR-3-2023).

3. Young writers will not be charged for the article processing fee between September 15, 2023 and October 31, 2023 (Voucher code: YOUNG2023).


Editor-in-Chief
European Journal of Chemistry

Keywords


Sambucus ebulus L.; Gold nanoparticles; Antioxidant activity; Antibacterial activity; Antileishmanial activity; Methyl orange degradation

Full Text:

PDF
PDF    Open Access

DOI: 10.5155/eurjchem.14.2.223-230.2403

Links for Article


| | | | | | |

| | | | | | |

| | | |

Related Articles




Article Metrics

icon graph This Abstract was viewed 236 times | icon graph PDF Article downloaded 63 times

Funding information


Elite Researcher Grant Committee under award number [958433] from the National Institute for Medical Research Development (NIMAD), Tehran, Iran..

References


[1]. Gan, P. P.; Ng, S. H.; Huang, Y.; Li, S. F. Y. Green synthesis of gold nanoparticles using palm oil mill effluent (POME): a low-cost and eco-friendly viable approach. Bioresour. Technol. 2012, 113, 132-135.
https://doi.org/10.1016/j.biortech.2012.01.015

[2]. Sathishkumar; Jha, P. K.; Vignesh; Rajkuberan; Jeyaraj; Selvakumar; Jha, R.; Sivaramakrishnan Cannonball fruit (Couroupita guianensis, Aubl.) extract mediated synthesis of gold nanoparticles and evaluation of its antioxidant activity. J. Mol. Liq. 2016, 215, 229-236.
https://doi.org/10.1016/j.molliq.2015.12.043

[3]. Lukman, A. I.; Gong, B.; Marjo, C. E.; Roessner, U.; Harris, A. T. Facile synthesis, stabilization, and anti-bacterial performance of discrete Ag nanoparticles using Medicago sativa seed exudates. J. Colloid Interface Sci. 2011, 353, 433-444.
https://doi.org/10.1016/j.jcis.2010.09.088

[4]. Sengani, M.; Rajeswari, D. Identification of potential antioxidant indices by biogenic gold nanoparticles in hyperglycemic Wistar rats. Environ. Toxicol. Pharmacol. 2017, 50, 11-19.
https://doi.org/10.1016/j.etap.2017.01.007

[5]. Rajeshkumar, S. Anticancer activity of eco-friendly gold nanoparticles against lung and liver cancer cells. J. Genet. Eng. Biotechnol. 2016, 14, 195-202.
https://doi.org/10.1016/j.jgeb.2016.05.007

[6]. Dorosti, N.; Jamshidi, F. Plant-mediated gold nanoparticles by Dracocephalum kotschyi as anticholinesterase agent: Synthesis, characterization, and evaluation of anticancer and antibacterial activity. J. Appl. Biomed. 2016, 14, 235-245.
https://doi.org/10.1016/j.jab.2016.03.001

[7]. Balasubramani, G.; Ramkumar, R.; Krishnaveni, N.; Sowmiya, R.; Deepak, P.; Arul, D.; Perumal, P. GC-MS analysis of bioactive components and synthesis of gold nanoparticle using Chloroxylon swietenia DC leaf extract and its larvicidal activity. J. Photochem. Photobiol. B 2015, 148, 1-8.
https://doi.org/10.1016/j.jphotobiol.2015.03.016

[8]. Mahakham, W.; Theerakulpisut, P.; Maensiri, S.; Phumying, S.; Sarmah, A. K. Environmentally benign synthesis of phytochemicals-capped gold nanoparticles as nanopriming agent for promoting maize seed germination. Sci. Total Environ. 2016, 573, 1089-1102.
https://doi.org/10.1016/j.scitotenv.2016.08.120

[9]. Balalakshmi, C.; Gopinath, K.; Govindarajan, M.; Lokesh, R.; Arumugam, A.; Alharbi, N. S.; Kadaikunnan, S.; Khaled, J. M.; Benelli, G. Green synthesis of gold nanoparticles using a cheap Sphaeranthus indicus extract: Impact on plant cells and the aquatic crustacean Artemia nauplii. J. Photochem. Photobiol. B 2017, 173, 598-605.
https://doi.org/10.1016/j.jphotobiol.2017.06.040

[10]. Ghorbani, M.; Hamishehkar, H. Redox and pH-responsive gold nanoparticles as a new platform for simultaneous triple anti-cancer drugs targeting. Int. J. Pharm. 2017, 520, 126-138.
https://doi.org/10.1016/j.ijpharm.2017.02.008

[11]. Singh, P.; Kim, Y. J.; Yang, D. C. A strategic approach for rapid synthesis of gold and silver nanoparticles by Panax ginseng leaves. Artif. Cells Nanomed. Biotechnol. 2016, 44, 1949-1957.
https://doi.org/10.3109/21691401.2015.1115410

[12]. Dwivedi, A. D.; Gopal, K. Biosynthesis of silver and gold nanoparticles using Chenopodium album leaf extract. Colloids Surf. A Physicochem. Eng. Asp. 2010, 369, 27-33.
https://doi.org/10.1016/j.colsurfa.2010.07.020

[13]. Joseph, S.; Mathew, B. Microwave assisted facile green synthesis of silver and gold nanocatalysts using the leaf extract of Aerva lanata. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 136, 1371-1379.
https://doi.org/10.1016/j.saa.2014.10.023

[14]. Anand, K.; Gengan, R. M.; Phulukdaree, A.; Chuturgoon, A. Agroforestry waste Moringa oleifera petals mediated green synthesis of gold nanoparticles and their anti-cancer and catalytic activity. J. Ind. Eng. Chem. 2015, 21, 1105-1111.
https://doi.org/10.1016/j.jiec.2014.05.021

[15]. Dubey, S. P.; Lahtinen, M.; Särkkä, H.; Sillanpää, M. Bioprospective of Sorbus aucuparia leaf extract in development of silver and gold nanocolloids. Colloids Surf. B Biointerfaces 2010, 80, 26-33.
https://doi.org/10.1016/j.colsurfb.2010.05.024

[16]. El-Batal, A. I.; ElKenawy, N. M.; Yassin, A. S.; Amin, M. A. Laccase production by Pleurotus ostreatus and its application in synthesis of gold nanoparticles. Biotechnol. Rep. (Amst.) 2015, 5, 31-39.
https://doi.org/10.1016/j.btre.2014.11.001

[17]. Ankamwar, B. Biosynthesis of Gold Nanoparticles (Green-gold) Using Leaf Extract ofTerminalia Catappa. E-J. Chem. 2010, 7, 1334-1339.
https://doi.org/10.1155/2010/745120

[18]. Philip, D. Rapid green synthesis of spherical gold nanoparticles using Mangifera indica leaf. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2010, 77, 807-810.
https://doi.org/10.1016/j.saa.2010.08.008

[19]. Sheny, D. S.; Mathew, J.; Philip, D. Phytosynthesis of Au, Ag and Au-Ag bimetallic nanoparticles using aqueous extract and dried leaf of Anacardium occidentale. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2011, 79, 254-262.
https://doi.org/10.1016/j.saa.2011.02.051

[20]. Philip, D.; Unni, C.; Aromal, S. A.; Vidhu, V. K. Murraya Koenigii leaf-assisted rapid green synthesis of silver and gold nanoparticles. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2011, 78, 899-904.
https://doi.org/10.1016/j.saa.2010.12.060

[21]. Shirzadi-Ahodashti, M.; Mortazavi-Derazkola, S.; Ebrahimzadeh, M. A. Biosynthesis of noble metal nanoparticles using crataegus monogyna leaf extract (CML@X-NPs, X= Ag, Au): Antibacterial and cytotoxic activities against breast and gastric cancer cell lines. Surf. Interfaces 2020, 21, 100697.
https://doi.org/10.1016/j.surfin.2020.100697

[22]. Kaya, Y.; Haji, E. K.; Arvas, Y. E.; Aksoy, H. M. Sambucus ebulus L.: Past, present and future. In Proceedings of the 2nd International Conference on Biosciences and Medical Engineering (ICBME2019): Towards innovative research and cross-disciplinary collaborations; AIP Publishing, 2019. https://doi.org/10.1063/1.5125534
https://doi.org/10.1063/1.5125534

[23]. Ebrahimzadeh, M. A.; Mahmoudi, M.; Saiednia, S.; Pourmorad, F.; Salimi, E. Anti-inflammatory and anti-nociceptive properties of fractionated extracts in different parts of Sambucus ebulus. J. Mazandaran Univ. Med. Sci. 2006, 16, 35-47. http://jmums.mazums .ac.ir/article-1-132-en.html

[24]. Ebrahimzadeh, M. A.; Mahmoudi, M.; Karami, M.; Saeedi, S.; Ahmadi, A. H.; Salimi, E. Separation of active and toxic portions in Sambucus ebulus. Pak. J. Biol. Sci. 2007, 10, 4171-4173.
https://doi.org/10.3923/pjbs.2007.4171.4173

[25]. Jiménez, P.; Tejero, J.; Cordoba-Diaz, D.; Quinto, E. J.; Garrosa, M.; Gayoso, M. J.; Girbés, T. Ebulin from dwarf elder (Sambucus ebulus L.): a mini-review. Toxins (Basel) 2015, 7, 648-658.
https://doi.org/10.3390/toxins7030648

[26]. Barak, T. H.; Celep, E.; İnan, Y.; Yeşilada, E. In vitro human digestion simulation of the bioavailability and antioxidant activity of phenolics from Sambucus ebulus L. fruit extracts. Food Biosci. 2020, 37, 100711.
https://doi.org/10.1016/j.fbio.2020.100711

[27]. Tasinov, O.; Kiselova-Kaneva, Y.; Ivanova, D. Sambucus ebulus - from traditional medicine to recent studies. Scr. Sci. Medica 2013, 45, 36-42.
https://doi.org/10.14748/ssm.v45i2.319

[28]. Saravi, S. S. S.; Shokrzadeh, M.; Hosseini Shirazi, F. Cytotoxicity of Sambucus ebulus on cancer cell lines and protective effects of vitamins C and E against its cytotoxicity on normal cell lines. Afr. J. Biotechnol. 2013, 12(21), 3360-3365.

[29]. Shokrzadeh, M.; Saravi, S. S. S. The chemistry, pharmacology and clinical properties of Sambucus ebulus: A review. J. Med. Plant Res. 2010, 4, 095-103.

[30]. Fathi, H.; Ebrahimzadeh, M. A.; Ziar, A.; Mohammadi, H. Oxidative damage induced by retching; antiemetic and neuroprotective role of Sambucus ebulus L. Cell Biol. Toxicol. 2015, 31, 231-239.
https://doi.org/10.1007/s10565-015-9307-8

[31]. Ebrahimzadeh, M. A.; Nabavi, S. F.; Nabavi, S. M. Antioxidant activities of methanol extract of Sambucus ebulus L. flower. Pak. J. Biol. Sci. 2009, 12, 447-450.
https://doi.org/10.3923/pjbs.2009.447.450

[32]. Ahmad, A.; Syed, F.; Shah, A.; Khan, Z.; Tahir, K.; Khan, A. U.; Yuan, Q. Silver and gold nanoparticles from Sargentodoxa cuneata: synthesis, characterization and antileishmanial activity. RSC Adv. 2015, 5, 73793-73806.
https://doi.org/10.1039/C5RA13206A

[33]. Peterson, A. T.; Shaw, J. Lutzomyia vectors for cutaneous leishmaniasis in Southern Brazil: ecological niche models, predicted geographic distributions, and climate change effects. Int. J. Parasitol. 2003, 33, 919-931.
https://doi.org/10.1016/S0020-7519(03)00094-8

[34]. Natera, S.; Machuca, C.; Padrón-Nieves, M.; Romero, A.; Díaz, E.; Ponte-Sucre, A. Leishmania spp.: proficiency of drug-resistant parasites. Int. J. Antimicrob. Agents 2007, 29, 637-642.
https://doi.org/10.1016/j.ijantimicag.2007.01.004

[35]. Al-Radadi, N. S. Facile one-step green synthesis of gold nanoparticles (AuNp) using licorice root extract: Antimicrobial and anticancer study against HepG2 cell line. Arab. J. Chem. 2021, 14, 102956.
https://doi.org/10.1016/j.arabjc.2020.102956

[36]. Akhtari, J.; Faridnia, R.; Kalani, H.; Bastani, R.; Fakhar, M.; Rezvan, H.; Beydokhti, A. K. Potent in vitro antileishmanial activity of a nanoformulation of cisplatin with carbon nanotubes against Leishmania major. J. Glob. Antimicrob. Resist. 2019, 16, 11-16.
https://doi.org/10.1016/j.jgar.2018.09.004

[37]. Faridnia, R.; Kalani, H.; Fakhar, M.; Akhtari, J. Investigating in vitro anti-leishmanial effects of silibinin and silymarin on Leishmania major. Ann. Parasitol. 2018, 64, 29-35.

[38]. Akilandaeaswari, B.; Muthu, K. Green method for synthesis and characterization of gold nanoparticles using Lawsonia inermis seed extract and their photocatalytic activity. Mater. Lett. 2020, 277, 128344.
https://doi.org/10.1016/j.matlet.2020.128344

[39]. Rajan, A.; Rajan, A. R.; Philip, D. Elettaria cardamomum seed mediated rapid synthesis of gold nanoparticles and its biological activities. OpenNano 2017, 2, 1-8.
https://doi.org/10.1016/j.onano.2016.11.002

[40]. Dhand, V.; Soumya, L.; Bharadwaj, S.; Chakra, S.; Bhatt, D.; Sreedhar, B. Green synthesis of silver nanoparticles using Coffea arabica seed extract and its antibacterial activity. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 58, 36-43.
https://doi.org/10.1016/j.msec.2015.08.018

[41]. Vijaya Kumar, P.; Mary Jelastin Kala, S.; Prakash, K. S. Green synthesis of gold nanoparticles using Croton Caudatus Geisel leaf extract and their biological studies. Mater. Lett. 2019, 236, 19-22.
https://doi.org/10.1016/j.matlet.2018.10.025

[42]. Hashemi, Z.; Ebrahimzadeh, M. A.; Biparva, P.; Mortazavi-Derazkola, S.; Goli, H. R.; Sadeghian, F.; Kardan, M.; Rafiei, A. Biogenic silver and zero-Valent iron nanoparticles by Feijoa: Biosynthesis, characterization, cytotoxic, antibacterial and antioxidant activities. Anticancer Agents Med. Chem. 2020, 20, 1673-1687.
https://doi.org/10.2174/1871520620666200619165910

[43]. Geetha, R.; Ashokkumar, T.; Tamilselvan, S.; Govindaraju, K.; Sadiq, M.; Singaravelu, G. Green synthesis of gold nanoparticles and their anticancer activity. Cancer Nanotechnol. 2013, 4, 91-98.
https://doi.org/10.1007/s12645-013-0040-9

[44]. Naraginti, S.; Li, Y. Preliminary investigation of catalytic, antioxidant, anticancer and bactericidal activity of green synthesized silver and gold nanoparticles using Actinidia deliciosa. J. Photochem. Photobiol. B 2017, 170, 225-234.
https://doi.org/10.1016/j.jphotobiol.2017.03.023

[45]. Bindhu, M. R.; Umadevi, M. Antibacterial activities of green synthesized gold nanoparticles. Mater. Lett. 2014, 120, 122-125.
https://doi.org/10.1016/j.matlet.2014.01.108

[46]. Zhao, H.; Dong, J.; Lu, J.; Chen, J.; Li, Y.; Shan, L.; Lin, Y.; Fan, W.; Gu, G. Effects of extraction solvent mixtures on antioxidant activity evaluation and their extraction capacity and selectivity for free phenolic compounds in barley (Hordeum vulgare L.). J. Agric. Food Chem. 2006, 54, 7277-7286.
https://doi.org/10.1021/jf061087w

[47]. Hua, D.; Zhang, D.; Huang, B.; Yi, P.; Yan, C. Structural characterization and DPPH· radical scavenging activity of a polysaccharide from Guara fruits. Carbohydr. Polym. 2014, 103, 143-147.
https://doi.org/10.1016/j.carbpol.2013.12.009

[48]. Shabestarian, H.; Homayouni-Tabrizi, M.; Soltani, M.; Namvar, F.; Azizi, S.; Mohamad, R.; Shabestarian, H. Green synthesis of gold nanoparticles using sumac aqueous extract and their antioxidant activity. Mater. Res. 2016, 20, 264-270.
https://doi.org/10.1590/1980-5373-mr-2015-0694

[49]. Pu, S.; Li, J.; Sun, L.; Zhong, L.; Ma, Q. An in vitro comparison of the antioxidant activities of chitosan and green synthesized gold nanoparticles. Carbohydr. Polym. 2019, 211, 161-172.
https://doi.org/10.1016/j.carbpol.2019.02.007

[50]. Lodge, R.; Descoteaux, A. Phagocytosis of Leishmania donovani amastigotes is Rac1 dependent and occurs in the absence of NADPH oxidase activation. Eur. J. Immunol. 2006, 36, 2735-2744.
https://doi.org/10.1002/eji.200636089

[51]. Allahverdiyev, A. M.; Abamor, E. S.; Bagirova, M.; Ustundag, C. B.; Kaya, C.; Kaya, F.; Rafailovich, M. Antileishmanial effect of silver nanoparticles and their enhanced antiparasitic activity under ultraviolet light. Int. J. Nanomedicine 2011, 6, 2705-2714.
https://doi.org/10.2147/IJN.S23883

[52]. Hashemi, Z.; Mohammadyan, M.; Naderi, S.; Fakhar, M.; Biparva, P.; Akhtari, J.; Ebrahimzadeh, M. A. Green synthesis of silver nanoparticles using Ferula persica extract (Fp-NPs): Characterization, antibacterial, antileishmanial, and in vitro anticancer activities. Mater. Today Commun. 2021, 27, 102264.
https://doi.org/10.1016/j.mtcomm.2021.102264

[53]. Cyril, N.; George, J. B.; Nair, P. V.; Joseph, L.; Sunila; Smitha; Anila; Sylas Catalytic activity of Derris trifoliata stabilized gold and silver nanoparticles in the reduction of isomers of nitrophenol and azo violet. Nano-struct. Nano-Objects 2020, 22, 100430.
https://doi.org/10.1016/j.nanoso.2020.100430

[54]. Jayapriya, M.; Dhanasekaran, D.; Arulmozhi, M.; Nandhakumar, E.; Senthilkumar, N.; Sureshkumar, K. Green synthesis of silver nanoparticles using Piper longum catkin extract irradiated by sunlight: antibacterial and catalytic activity. Res. Chem. Intermed. 2019, 45, 3617-3631.
https://doi.org/10.1007/s11164-019-03812-5

[55]. Alizadeh, S. R.; Seyedabadi, M.; Montazeri, M.; Khan, B. A.; Ebrahimzadeh, M. A. Allium paradoxum extract mediated green synthesis of SeNPs: Assessment of their anticancer, antioxidant, iron chelating activities, and antimicrobial activities against fungi, ATCC bacterial strains, Leishmania parasite, and catalytic reduction of methylene blue. Mater. Chem. Phys. 2023, 296, 127240.
https://doi.org/10.1016/j.matchemphys.2022.127240

[56]. Singh, P.; Pandit, S.; Garnæs, J.; Tunjic, S.; Mokkapati, V.; Sultan, A.; Thygesen, A.; Mackevica, A.; Mateiu, R. V.; Daugaard, A. E.; Baun, A.; Mijakovic, I. Green synthesis of gold and silver nanoparticles from Cannabis sativa (industrial hemp) and their capacity for biofilm inhibition. Int. J. Nanomedicine 2018, 13, 3571-3591.
https://doi.org/10.2147/IJN.S157958

[57]. Hashemi, Z.; Shirzadi-Ahodashti, M.; Mortazavi-Derazkola, S.; Ebrahimzadeh, M. A. Sustainable biosynthesis of metallic silver nanoparticles using barberry phenolic extract: Optimization and evaluation of photocatalytic, in vitro cytotoxicity, and antibacterial activities against multidrug-resistant bacteria. Inorg. Chem. Commun. 2022, 139, 109320.
https://doi.org/10.1016/j.inoche.2022.109320

[58]. Ebrahimzadeh, M. A.; Hashemi, Z.; Mohammadyan, M.; Fakhar, M.; Mortazavi-Derazkola, S. In vitro cytotoxicity against human cancer cell lines (MCF-7 and AGS), antileishmanial and antibacterial activities of green synthesized silver nanoparticles using Scrophularia striata extract. Surf. Interfaces 2021, 23, 100963.
https://doi.org/10.1016/j.surfin.2021.100963

[59]. Alizadeh, S. R.; Biparva, P.; Goli, H. R.; Khan, B. A.; Ebrahimzadeh, M. A. Green synthesis of AuNPs by Crocus caspius-investigation of catalytic degradation of organic pollutants, their cytotoxicity, and antimicrobial activity. Catalysts 2022, 13, 63.
https://doi.org/10.3390/catal13010063

[60]. Hashemi, Z.; Shirzadi-Ahoodashti, M.; Ebrahimzadeh, M. A. Anti-leishmanial and antibacterial activities of biologically synthesized silver nanoparticles using Alcea rosea extract (AR-AgNPs). J. Water Environ. Nanotechnol. 2021, 6, 265-276.


How to cite


Ebrahimzadeh, M.; Alizadeh, S.; Hashemi, Z. Eur. J. Chem. 2023, 14(2), 223-230. doi:10.5155/eurjchem.14.2.223-230.2403
Ebrahimzadeh, M.; Alizadeh, S.; Hashemi, Z. Green synthesis of gold nanoparticles using Sambucus ebulus fruit extract, characterization, and antileishmanial, antibacterial, antioxidant, and photocatalytic activities. Eur. J. Chem. 2023, 14(2), 223-230. doi:10.5155/eurjchem.14.2.223-230.2403
Ebrahimzadeh, M., Alizadeh, S., & Hashemi, Z. (2023). Green synthesis of gold nanoparticles using Sambucus ebulus fruit extract, characterization, and antileishmanial, antibacterial, antioxidant, and photocatalytic activities. European Journal of Chemistry, 14(2), 223-230. doi:10.5155/eurjchem.14.2.223-230.2403
Ebrahimzadeh, Mohammad, Seyedeh Roya Alizadeh, & Zahra Hashemi. "Green synthesis of gold nanoparticles using Sambucus ebulus fruit extract, characterization, and antileishmanial, antibacterial, antioxidant, and photocatalytic activities." European Journal of Chemistry [Online], 14.2 (2023): 223-230. Web. 3 Oct. 2023
Ebrahimzadeh, Mohammad, Alizadeh, Seyedeh, AND Hashemi, Zahra. "Green synthesis of gold nanoparticles using Sambucus ebulus fruit extract, characterization, and antileishmanial, antibacterial, antioxidant, and photocatalytic activities" European Journal of Chemistry [Online], Volume 14 Number 2 (30 June 2023)

The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item



DOI Link: https://doi.org/10.5155/eurjchem.14.2.223-230.2403


CrossRef | Scilit | GrowKudos | Researchgate | Publons | ScienceGate | Scite | Lens | OUCI

WorldCat Paperbuzz | LibKey Citeas | Dimensions | Semanticscholar | Plumx | Kopernio | Zotero | Mendeley

ZoteroSave to Zotero MendeleySave to Mendeley



European Journal of Chemistry 2023, 14(2), 223-230 | doi: https://doi.org/10.5155/eurjchem.14.2.223-230.2403 | Get rights and content

Refbacks

  • There are currently no refbacks.




Copyright (c) 2023 Authors

Creative Commons License
This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at http://www.eurjchem.com/index.php/eurjchem/pages/view/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (http://www.eurjchem.com/index.php/eurjchem/pages/view/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).



© Copyright 2010 - 2023  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2010-2023 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.