European Journal of Chemistry

Overcoming multidrug-resistant bacteria and fungi by green synthesis of AgNPs using Nepeta pogonosperma extract, optimization, characterization and evaluation of antibacterial and antifungal effects

Crossmark


Main Article Content

Mohammad Ali Ebrahimzadeh
Amin Barani
Amir Hossein Habibian
Hamid Reza Goli
Seyedeh Roya Alizadeh

Abstract

This study explained a green synthesis of silver nanoparticles (AgNPs) using Nepeta pogonosperma extract and evaluated their antibacterial activity. Optimization of the temperature, concentration, pH, and reaction time was established to produce silver nanoparticles. The best condition was 10 mM AgNO3, pH = 14, temperature 85 °C, and reaction time 24 hours. The formation of silver nanoparticles was confirmed by colour-changing, UV-vis, FE-SEM, EDX, XRD, FT-IR, and DLS analysis. The prepared AgNPs had a spherical shape with an average size of 51.21±0.02 nm. In addition, our biofabricated nanoparticles displayed potential antibacterial activity against the tested strains. The MIC value of 1.17 µg/mL was determined against strains of Pseudomonas aeruginosa, Acinetobacter baumannii, and Escherichia coli and 2.34 µg/mL against Staphylococcus aureus, Klebsiella pneumoniae, Proteus mirabilis and Enterococcus faecalis. Furthermore, AgNPs exhibited excellent antifungal effects against Candida albicans strains (0.073 μg/mL). In general, N. pogonosperma played an important role in reducing Ag(+1) to Ag(0) and the production of Ag(0) with suitable surface features in combination with efficient biological activities.


icon graph This Abstract was viewed 403 times | icon graph Article PDF downloaded 173 times

How to Cite
(1)
Ebrahimzadeh, M. A.; Barani, A.; Habibian, A. H.; Goli, H. R.; Alizadeh, S. R. Overcoming Multidrug-Resistant Bacteria and Fungi by Green Synthesis of AgNPs Using Nepeta Pogonosperma Extract, Optimization, Characterization and Evaluation of Antibacterial and Antifungal Effects. Eur. J. Chem. 2023, 14, 254-263.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Sbaraglini, M. L.; Talevi, A. Hybrid compounds as anti-infective agents. Curr. Top. Med. Chem. 2017, 17, 1080-1095.
https://doi.org/10.2174/1568026616666160927160912

[2]. Mba, I. E.; Nweze, E. I. Nanoparticles as therapeutic options for treating multidrug-resistant bacteria: research progress, challenges, and prospects. World J. Microbiol. Biotechnol. 2021, 37, 108.
https://doi.org/10.1007/s11274-021-03070-x

[3]. Borgio, J. F.; Rasdan, A. S.; Sonbol, B.; Alhamid, G.; Almandil, N. B.; AbdulAzeez, S. Emerging status of multidrug-resistant bacteria and fungi in the Arabian Peninsula. Biology (Basel) 2021, 10, 1144.
https://doi.org/10.3390/biology10111144

[4]. Ebrahimzadeh, M. A.; Hashemi, Z.; Mohammadyan, M.; Fakhar, M.; Mortazavi-Derazkola, S. In vitro cytotoxicity against human cancer cell lines (MCF-7 and AGS), antileishmanial and antibacterial activities of green synthesized silver nanoparticles using Scrophularia striata extract. Surf. Interfaces 2021, 23, 100963.
https://doi.org/10.1016/j.surfin.2021.100963

[5]. Choi, J. S.; Jung, H. C.; Baek, Y. J.; Kim, B. Y.; Lee, M. W.; Kim, H. D.; Kim, S. W. Antibacterial activity of green-synthesized silver nanoparticles using Areca catechu extract against antibiotic-resistant bacteria. Nanomaterials (Basel) 2021, 11, 205.
https://doi.org/10.3390/nano11010205

[6]. Wertheimer, A. The urgent need for new antibiotics. J. Pharm. Health Serv. Res. 2022, 13, 167-167.
https://doi.org/10.1093/jphsr/rmac024

[7]. Vivas, R.; Barbosa, A. A. T.; Dolabela, S. S.; Jain, S. Multidrug-resistant bacteria and alternative methods to control them: An overview. Microb. Drug Resist. 2019, 25, 890-908.
https://doi.org/10.1089/mdr.2018.0319

[8]. Lei, Z.; Karim, A. The challenges and applications of nanotechnology against bacterial resistance. J. Vet. Pharmacol. Ther. 2021, 44, 281-297.
https://doi.org/10.1111/jvp.12936

[9]. Hashemi, Z.; Shirzadi-Ahoodashti, M.; Ebrahimzadeh, M. A. Antileishmanial and antibacterial activities of biologically synthesized silver nanoparticles using Alcea rosea extract (AR-AgNPs). J. Water Environ. Nanotechnol. 2021, 6, 265-276.

[10]. Ebrahimzadeh, M. A.; Naghizadeh, A.; Amiri, O.; Shirzadi-Ahodashti, M.; Mortazavi-Derazkola, S. Green and facile synthesis of Ag nanoparticles using Crataegus pentagyna fruit extract (CP-AgNPs) for organic pollution dyes degradation and antibacterial application. Bioorg. Chem. 2020, 94, 103425.
https://doi.org/10.1016/j.bioorg.2019.103425

[11]. Hashemi, Z.; Shirzadi-Ahodashti, M.; Mortazavi-Derazkola, S.; Ebrahimzadeh, M. A. Sustainable biosynthesis of metallic silver nanoparticles using barberry phenolic extract: Optimization and evaluation of photocatalytic, in vitro cytotoxicity, and antibacterial activities against multidrug-resistant bacteria. Inorg. Chem. Commun. 2022, 139, 109320.
https://doi.org/10.1016/j.inoche.2022.109320

[12]. Hashemi, Z.; Mortazavi-Derazkola, S.; Biparva, P.; Goli, H. R.; Sadeghian, F.; Kardan, M.; Rafiei, A.; Ebrahimzadeh, M. A. Green synthesized silver nanoparticles using Feijoa sellowiana leaf extract, evaluation of their antibacterial, anticancer and antioxidant activities. Iran. J. Pharm. Res. 2020, 19, 306-320.

[13]. Shirzadi-Ahodashti, M.; Mizwari, Z. M.; Hashemi, Z.; Rajabalipour, S.; Ghoreishi, S. M.; Mortazavi-Derazkola, S.; Ebrahimzadeh, M. A. Discovery of high antibacterial and catalytic activities of biosynthesized silver nanoparticles using C. fruticosus (CF-AgNPs) against multi-drug resistant clinical strains and hazardous pollutants. Environ. Technol. Innov. 2021, 23, 101607.
https://doi.org/10.1016/j.eti.2021.101607

[14]. Hashemi, Z.; Ebrahimzadeh, M. A.; Biparva, P.; Mortazavi-Derazkola, S.; Goli, H. R.; Sadeghian, F.; Kardan, M.; Rafiei, A. Biogenic silver and zero-Valent iron nanoparticles by Feijoa: Biosynthesis, characterization, cytotoxic, antibacterial and antioxidant activities. Anticancer Agents Med. Chem. 2020, 20, 1673-1687.
https://doi.org/10.2174/1871520620666200619165910

[15]. Shirzadi-Ahodashti, M.; Mortazavi-Derazkola, S.; Ebrahimzadeh, M. A. Biosynthesis of noble metal nanoparticles using crataegus monogyna leaf extract (CML@X-NPs, X= Ag, Au): Antibacterial and cytotoxic activities against breast and gastric cancer cell lines. Surf. Interfaces 2020, 21, 100697.
https://doi.org/10.1016/j.surfin.2020.100697

[16]. Alizadeh, S. R.; Ebrahimzadeh, M. A. Characterization and anticancer activities of green synthesized CuO nanoparticles, A review. Anticancer Agents Med. Chem. 2021, 21, 1529-1543.
https://doi.org/10.2174/1871520620666201029111532

[17]. Ouerghi, O.; Geesi, M. H.; Riadi, Y.; Ibnouf, E. O. Limon-citrus extract as a capping/reducing agent for the synthesis of titanium dioxide nanoparticles: characterization and antibacterial activity. Green Chem. Lett. Rev. 2022, 15, 483-490.
https://doi.org/10.1080/17518253.2022.2094205

[18]. Silva, A. A.; Sousa, A. M. F.; Furtado, C. R. G.; Carvalho, N. M. F. Green magnesium oxide prepared by plant extracts: synthesis, properties and applications. Materials Today Sustainability 2022, 20, 100203.
https://doi.org/10.1016/j.mtsust.2022.100203

[19]. Eltaweil, A. S.; Fawzy, M.; Hosny, M.; Abd El-Monaem, E. M.; Tamer, T. M.; Omer, A. M. Green synthesis of platinum nanoparticles using Atriplex halimus leaves for potential antimicrobial, antioxidant, and catalytic applications. Arab. J. Chem. 2022, 15, 103517.
https://doi.org/10.1016/j.arabjc.2021.103517

[20]. Sargazi, A.; Barani, A.; Heidari Majd, M. Synthesis and apoptotic efficacy of biosynthesized silver nanoparticles using acacia luciana flower extract in MCF-7 breast cancer cells: Activation of Bak1 and bclx for cancer therapy. Bionanoscience 2020, 10, 683-689.
https://doi.org/10.1007/s12668-020-00753-x

[21]. Ali, T.; Javan, M.; Sonboli, A.; Semnanian, S. Evaluation of the antinociceptive and anti-inflammatory effects of essential oil of Nepeta pogonosperma Jamzad et Assadi in rats. Daru 2012, 20, 48.
https://doi.org/10.1186/2008-2231-20-48

[22]. Jamzad, Z.; Grayer, R. J.; Kite, G. C.; Simmonds, M. S. J.; Ingrouille, M.; Jalili, A. Leaf surface flavonoids in Iranian species of Nepeta (Lamiaceae) and some related genera. Biochem. Syst. Ecol. 2003, 31, 587-600.
https://doi.org/10.1016/S0305-1978(02)00221-1

[23]. Takeda, Y.; Matsumoto, T.; Ooiso, Y.; Honda, G.; Tabata, M.; Fujita, T.; Otsuka, H.; Sezik, E.; Yesilada, E. Nepetacilicioside, a New Iridoid Glucoside from Nepeta cilicia. J. Nat. Prod. 1996, 59, 518-519.
https://doi.org/10.1021/np960334v

[24]. Fraga, B. M.; Hernández, M. G.; Mestres, T.; Arteaga, J. Abietane diterpenes from Nepeta teydea. Phytochemistry 1998, 47, 251-254.
https://doi.org/10.1016/S0031-9422(97)00555-4

[25]. Alizadeh, S. R.; Seyedabadi, M.; Montazeri, M.; Khan, B. A.; Ebrahimzadeh, M. A. Allium paradoxum extract mediated green synthesis of SeNPs: Assessment of their anticancer, antioxidant, iron chelating activities, and antimicrobial activities against fungi, ATCC bacterial strains, Leishmania parasite, and catalytic reduction of methylene blue. Mater. Chem. Phys. 2023, 296, 127240.
https://doi.org/10.1016/j.matchemphys.2022.127240

[26]. Shirzadi-Ahodashti, M.; Mizwari, Z. M.; Jafarkhani, B.; Mohamadzadeh, S.; Abbastabar, M.; Motafeghi, F.; Sadeghi Lalerdi, F.; Ali Ebrahimzadeh, M.; Mortazavi-Derazkola, S. Biogenic synthesis of spherical-shaped noble metal nanoparticles using Vicia faba extract (X@VF, X = Au, Ag) for photocatalytic degradation of organic hazardous dye and their in vitro antifungal, antibacterial and anticancer activities. Inorg. Chem. Commun. 2022, 146, 110042.
https://doi.org/10.1016/j.inoche.2022.110042

[27]. Shafey, A. M. E. Green synthesis of metal and metal oxide nanoparticles from plant leaf extracts and their applications: A review. Green Process. Synth. 2020, 9, 304-339.
https://doi.org/10.1515/gps-2020-0031

[28]. Shirzadi-Ahodashti, M.; Hashemi, Z.; Mortazavi, Y.; Khormali, K.; Mortazavi-Derazkola, S.; Ebrahimzadeh, M. A. Discovery of high antibacterial and catalytic activities against multi-drug resistant clinical bacteria and hazardous pollutants by biosynthesized of silver nanoparticles using Stachys inflata extract (AgNPs@SI). Colloids Surf. A Physicochem. Eng. Asp. 2021, 617, 126383.
https://doi.org/10.1016/j.colsurfa.2021.126383

[29]. Nikaeen, G.; Yousefinejad, S.; Rahmdel, S.; Samari, F.; Mahdavinia, S. Central composite design for optimizing the biosynthesis of silver nanoparticles using Plantago major extract and investigating antibacterial, antifungal and antioxidant activity. Sci. Rep. 2020, 10, 9642.
https://doi.org/10.1038/s41598-020-66357-3

[30]. Pirtarighat, S.; Ghannadnia, M.; Baghshahi, S. Green synthesis of silver nanoparticles using the plant extract of Salvia spinosa grown in vitro and their antibacterial activity assessment. J. Nanostructure Chem. 2019, 9, 1-9.
https://doi.org/10.1007/s40097-018-0291-4

[31]. Hashemi, Z.; Mizwari, Z. M.; Mohammadi-Aghdam, S.; Mortazavi-Derazkola, S.; Ali Ebrahimzadeh, M. Sustainable green synthesis of silver nanoparticles using Sambucus ebulus phenolic extract (AgNPs@SEE): Optimization and assessment of photocatalytic degradation of methyl orange and their in vitro antibacterial and anticancer activity. Arab. J. Chem. 2022, 15, 103525.
https://doi.org/10.1016/j.arabjc.2021.103525

[32]. Singh, H.; Du, J.; Singh, P.; Yi, T. H. Role of green silver nanoparticles synthesized from Symphytum officinale leaf extract in protection against UVB-induced photoaging. J. Nanostructure Chem. 2018, 8, 359-368.
https://doi.org/10.1007/s40097-018-0281-6

[33]. Gomathi, A. C.; Xavier Rajarathinam, S. R.; Mohammed Sadiq, A.; Rajeshkumar, S. Anticancer activity of silver nanoparticles synthesized using aqueous fruit shell extract of Tamarindus indica on MCF-7 human breast cancer cell line. J. Drug Deliv. Sci. Technol. 2020, 55, 101376.
https://doi.org/10.1016/j.jddst.2019.101376

[34]. Sadeghi, B.; Gholamhoseinpoor, F. A study on the stability and green synthesis of silver nanoparticles using Ziziphora tenuior (Zt) extract at room temperature. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 134, 310-315.
https://doi.org/10.1016/j.saa.2014.06.046

[35]. Rao, B.; Tang, R.-C. Green synthesis of silver nanoparticles with antibacterial activities using aqueous Eriobotrya japonica leaf extract. Adv. Nat. Sci. Nanosci. Nanotechnol. 2017, 8, 015014.
https://doi.org/10.1088/2043-6254/aa5983

[36]. Salayová, A.; Bedlovičová, Z.; Daneu, N.; Baláž, M.; Lukáčová Bujňáková, Z.; Balážová, Ľ.; Tkáčiková, Ľ. Green synthesis of silver nanoparticles with antibacterial activity using various medicinal plant extracts: Morphology and antibacterial efficacy. Nanomaterials (Basel) 2021, 11 (4), 1005.
https://doi.org/10.3390/nano11041005

[37]. Shaaban, M. T.; Ghaly, M. F.; Fahmi, S. M. Antibacterial activities of hexadecanoic acid methyl ester and green-synthesized silver nanoparticles against multidrug-resistant bacteria. J. Basic Microbiol. 2021, 61, 557-568.
https://doi.org/10.1002/jobm.202100061

[38]. Khan, M. R.; Hoque, S. M.; Hossain, K. F. B.; Siddique, M. A. B.; Uddin, M. K.; Rahman, M. M. Green synthesis of silver nanoparticles using Ipomoea aquatica leaf extract and its cytotoxicity and antibacterial activity assay. Green Chem. Lett. Rev. 2020, 13, 303-315.
https://doi.org/10.1080/17518253.2020.1839573

[39]. Ajitha, B.; Reddy, Y. A. K.; Lee, Y.; Kim, M. J.; Ahn, C. W. Biomimetic synthesis of silver nanoparticles using Syzygium aromaticum (clove) extract: Catalytic and antimicrobial effects: Synthesis of Silver Nanoparticles: Catalytic and Antimicrobial Effects. Appl. Organomet. Chem. 2019, 33, e4867.
https://doi.org/10.1002/aoc.4867

[40]. Das, B.; Dash, S. K.; Mandal, D.; Ghosh, T.; Chattopadhyay, S.; Tripathy, S.; Das, S.; Dey, S. K.; Das, D.; Roy, S. Green synthesized silver nanoparticles destroy multidrug resistant bacteria via reactive oxygen species mediated membrane damage. Arab. J. Chem. 2017, 10, 862-876.
https://doi.org/10.1016/j.arabjc.2015.08.008

[41]. Lakkim, V.; Reddy, M. C.; Pallavali, R. R.; Reddy, K. R.; Reddy, C. V.; Inamuddin; Bilgrami, A. L.; Lomada, D. Green synthesis of silver nanoparticles and evaluation of their antibacterial activity against multidrug-resistant bacteria and wound healing efficacy using a Murine model. Antibiotics (Basel) 2020, 9, 902.
https://doi.org/10.3390/antibiotics9120902

[42]. Mare, A. D.; Ciurea, C. N.; Man, A.; Mareș, M.; Toma, F.; Berța, L.; Tanase, C. In vitro antifungal activity of silver nanoparticles biosynthesized with beech bark extract. Plants 2021, 10, 2153.
https://doi.org/10.3390/plants10102153

[43]. Jebril, S.; Khanfir Ben Jenana, R.; Dridi, C. Green synthesis of silver nanoparticles using Melia azedarach leaf extract and their antifungal activities: In vitro and in vivo. Mater. Chem. Phys. 2020, 248, 122898.
https://doi.org/10.1016/j.matchemphys.2020.122898

[44]. Mekky, A.; Farrag, A.; Sofy, A.; Hamed, A. Antibacterial and Antifungal Activity of Green-synthesized Silver Nanoparticles Using Spinacia oleracea leaves Extract. Egypt. J. Chem. 2021, 64 (10), 5781-5792.

[45]. Azarbani, F.; Shiravand, S. Green synthesis of silver nanoparticles by Ferulago macrocarpa flowers extract and their antibacterial, antifungal and toxic effects. Green Chem. Lett. Rev. 2020, 13, 41-49.
https://doi.org/10.1080/17518253.2020.1726504

Supporting Agencies

The Research Council of Mazandaran University of Medical Sciences (IR.MAZUMS.REC.1400.11446).
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).