European Journal of Chemistry 2023, 14(2), 202-210 | doi: https://doi.org/10.5155/eurjchem.14.2.202-210.2406 | Get rights and content

Issue cover




Crossmark

  Open Access OPEN ACCESS | Open Access PEER-REVIEWED | RESEARCH ARTICLE | DOWNLOAD PDF | VIEW FULL-TEXT PDF | TOTAL VIEWS

Discovery of high antibacterial and antitumor effects against multi-drug resistant clinically isolated bacteria and MCF-7 and AGS cell lines by biosynthesized silver nanoparticles using Oxalis corniculata extract


Mohammad Ali Ebrahimzadeh (1) orcid , Seyedeh Roya Alizadeh (2) orcid , Zahra Hashemi (3,*) orcid

(1) Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
(2) Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
(3) Department of Medicinal Chemistry, Faculty of Pharmacy, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
(*) Corresponding Author

Received: 25 Dec 2022 | Revised: 29 Jan 2023 | Accepted: 21 Feb 2023 | Published: 30 Jun 2023 | Issue Date: June 2023

Abstract


The green technique is a unique way to produce functional nanoparticles. We examined the green synthesis of Ag nanoparticles (O-AgNPs) by the extract of Oxalis corniculata. Green-synthesized O-AgNPs were accomplished by monitoring critical factors such as concentration, pH, reaction time, and temperature. Several analytical techniques, including scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction analysis, and UV-Vis spectroscopy, were applied to characterize O-AgNPs. The SEM analysis showed O-AgNPs with a spherical shape and an average size of 33.57 nm. The XRD pattern indicated the face-centered cubic (fcc) structure of the prepared O-AgNPs. The anticancer activity of the synthesized O-AgNPs was investigated in MCF-7 (breast) and AGS (gastric) cell lines, indicating high anticancer effects against selected cell lines. The growth of all selected bacteria containing Gram+ and Gram- was inhibited by O-AgNPs. O-AgNPs showed greater inhibition in comparison to conventional antibiotics. As a result, our green synthesized AgNPs using plant extracts exhibited anticancer and antibacterial activities.


Announcements


Our editors have decided to support scientists to publish their manuscripts in European Journal of Chemistry without any financial constraints.

1- The article processing fee will not be charged from the articles containing the single-crystal structure characterization or a DFT study between September 15, 2023 and October 31, 2023 (Voucher code: FALL2023).

2. A 50% discount will be applied to the article processing fee for submissions made between September 15, 2023 and October 31, 2023 by authors who have at least one publication in the European Journal of Chemistry (Voucher code: AUTHOR-3-2023).

3. Young writers will not be charged for the article processing fee between September 15, 2023 and October 31, 2023 (Voucher code: YOUNG2023).


Editor-in-Chief
European Journal of Chemistry

Keywords


Green synthesis; Characterization; Oxalis corniculate; Anticancer activity; Silver nanoparticles; Antibacterial activity

Full Text:

PDF
PDF    Open Access

DOI: 10.5155/eurjchem.14.2.202-210.2406

Links for Article


| | | | | | |

| | | | | | |

| | | |

Related Articles




Article Metrics

icon graph This Abstract was viewed 200 times | icon graph PDF Article downloaded 51 times

Funding information


Research reported in this publication was supported by Elite Researcher Grant Committee under award number [958433] from the National Institute for Medical Research Development (NIMAD), Tehran, Iran.

References


[1]. Anu, K.; Devanesan, S.; Prasanth, R.; AlSalhi, M. S.; Ajithkumar, S.; Singaravelu, G. Biogenesis of selenium nanoparticles and their anti-leukemia activity. J. King Saud Univ. Sci. 2020, 32, 2520-2526.
https://doi.org/10.1016/j.jksus.2020.04.018

[2]. Chang, Y.-N.; Zhang, M.; Xia, L.; Zhang, J.; Xing, G. The toxic effects and mechanisms of CuO and ZnO nanoparticles. Materials (Basel) 2012, 5, 2850-2871.
https://doi.org/10.3390/ma5122850

[3]. Majumdar, M.; Shivalkar, S.; Pal, A.; Verma, M. L.; Sahoo, A. K.; Roy, D. N. Nanotechnology for enhanced bioactivity of bioactive compounds. In Biotechnological Production of Bioactive Compounds; Elsevier, 2020; pp. 433-466.
https://doi.org/10.1016/B978-0-444-64323-0.00015-1

[4]. Ebrahimzadeh, M. A.; Tafazoli, A.; Akhtari, J.; Biparva, P.; Eslami, S. Engineered silver nanoparticles, A new nanoweapon against cancer. Anticancer Agents Med. Chem. 2019, 18, 1962-1969.
https://doi.org/10.2174/1871520618666180808093040

[5]. Agarwal, M.; Murugan, M. S.; Sharma, A.; Rai, R.; Kamboj, A.; Sharma, H.; Roy, S. K. Nanoparticles and its toxic effects: A review. Int. J. Curr. Microbiol. App. Sci. 2013, 2, 76-82.

[6]. Siegel, R.; DeSantis, C.; Virgo, K.; Stein, K.; Mariotto, A.; Smith, T.; Cooper, D.; Gansler, T.; Lerro, C.; Fedewa, S.; Lin, C.; Leach, C.; Cannady, R. S.; Cho, H.; Scoppa, S.; Hachey, M.; Kirch, R.; Jemal, A.; Ward, E. Cancer treatment and survivorship statistics, 2012. CA Cancer J. Clin. 2012, 62, 220-241.
https://doi.org/10.3322/caac.21149

[7]. Misra, R.; Acharya, S.; Sahoo, S. K. Cancer nanotechnology: application of nanotechnology in cancer therapy. Drug Discov. Today 2010, 15, 842-850.
https://doi.org/10.1016/j.drudis.2010.08.006

[8]. Alizadeh, S. R.; Ebrahimzadeh, M. A. Characterization and anticancer activities of green synthesized CuO nanoparticles, A review. Anticancer Agents Med. Chem. 2021, 21, 1529-1543.
https://doi.org/10.2174/1871520620666201029111532

[9]. ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium Pan-cancer analysis of whole genomes. Nature 2020, 578, 82-93.

[10]. Caputo, F.; De Nicola, M.; Ghibelli, L. Pharmacological potential of bioactive engineered nanomaterials. Biochem. Pharmacol. 2014, 92, 112-130.
https://doi.org/10.1016/j.bcp.2014.08.015

[11]. Vinardell, M. P.; Mitjans, M. Antitumor activities of metal oxide nanoparticles. Nanomaterials (Basel) 2015, 5, 1004-1021.
https://doi.org/10.3390/nano5021004

[12]. Hashemi, Z.; Ebrahimzadeh, M. A.; Biparva, P.; Mortazavi-Derazkola, S.; Goli, H. R.; Sadeghian, F.; Kardan, M.; Rafiei, A. Biogenic silver and zero-Valent iron nanoparticles by Feijoa: Biosynthesis, characterization, cytotoxic, antibacterial and antioxidant activities. Anticancer Agents Med. Chem. 2020, 20, 1673-1687.
https://doi.org/10.2174/1871520620666200619165910

[13]. Ebrahimzadeh, M. A.; Naghizadeh, A.; Amiri, O.; Shirzadi-Ahodashti, M.; Mortazavi-Derazkola, S. Green and facile synthesis of Ag nanoparticles using Crataegus pentagyna fruit extract (CP-AgNPs) for organic pollution dyes degradation and antibacterial application. Bioorg. Chem. 2020, 94, 103425.
https://doi.org/10.1016/j.bioorg.2019.103425

[14]. Mortazavi-Derazkola, S.; Ebrahimzadeh, M. A.; Amiri, O.; Goli, H. R.; Rafiei, A.; Kardan, M.; Salavati-Niasari, M. Facile green synthesis and characterization of Crataegus microphylla extract-capped silver nanoparticles (CME@Ag-NPs) and its potential antibacterial and anticancer activities against AGS and MCF-7 human cancer cells. J. Alloys Compd. 2020, 820, 153186.
https://doi.org/10.1016/j.jallcom.2019.153186

[15]. Shirzadi-Ahodashti, M.; Mizwari, Z. M.; Hashemi, Z.; Rajabalipour, S.; Ghoreishi, S. M.; Mortazavi-Derazkola, S.; Ebrahimzadeh, M. A. Discovery of high antibacterial and catalytic activities of biosynthesized silver nanoparticles using C. fruticosus (CF-AgNPs) against multi-drug resistant clinical strains and hazardous pollutants. Environ. Technol. Innov. 2021, 23, 101607.
https://doi.org/10.1016/j.eti.2021.101607

[16]. Hashemi, Z.; Mohammadyan, M.; Naderi, S.; Fakhar, M.; Biparva, P.; Akhtari, J.; Ebrahimzadeh, M. A. Green synthesis of silver nanoparticles using Ferula persica extract (Fp-NPs): Characterization, antibacterial, antileishmanial, and in vitro anticancer activities. Mater. Today Commun. 2021, 27, 102264.
https://doi.org/10.1016/j.mtcomm.2021.102264

[17]. Shirzadi-Ahodashti, M.; Hashemi, Z.; Mortazavi, Y.; Khormali, K.; Mortazavi-Derazkola, S.; Ebrahimzadeh, M. A. Discovery of high antibacterial and catalytic activities against multi-drug resistant clinical bacteria and hazardous pollutants by biosynthesized of silver nanoparticles using Stachys inflata extract (AgNPs@SI). Colloids Surf. A Physicochem. Eng. Asp. 2021, 617, 126383.
https://doi.org/10.1016/j.colsurfa.2021.126383

[18]. Ebrahimzadeh, M. A.; Hashemi, Z.; Mohammadyan, M.; Fakhar, M.; Mortazavi-Derazkola, S. In vitro cytotoxicity against human cancer cell lines (MCF-7 and AGS), antileishmanial and antibacterial activities of green synthesized silver nanoparticles using Scrophularia striata extract. Surf. Interfaces 2021, 23, 100963.
https://doi.org/10.1016/j.surfin.2021.100963

[19]. Ranjbar, T.; Hashemi, Z.; Sadeghian, F.; Goli, H. R.; Ahanjan, M.; Ebrahimzadeh, M. A. Green Synthesis of Silver Nanoparticles with Allium paradoxum Extract and Evaluation of their Antibacterial Activities. Journal of Mazandaran University of Medical Sciences 2020, 29, 1-11.

[20]. Rastogi, L.; Arunachalam, J. Sunlight based irradiation strategy for rapid green synthesis of highly stable silver nanoparticles using aqueous garlic (Allium sativum) extract and their antibacterial potential. Mater. Chem. Phys. 2011, 129, 558-563.
https://doi.org/10.1016/j.matchemphys.2011.04.068

[21]. Kanipandian, N.; Kannan, S.; Ramesh, R.; Subramanian, P.; Thirumurugan, R. Characterization, antioxidant and cytotoxicity evaluation of green synthesized silver nanoparticles using Cleistanthus collinus extract as surface modifier. Mater. Res. Bull. 2014, 49, 494-502.
https://doi.org/10.1016/j.materresbull.2013.09.016

[22]. Reddy, N. J.; Nagoor Vali, D.; Rani, M.; Rani, S. S. Evaluation of antioxidant, antibacterial and cytotoxic effects of green synthesized silver nanoparticles by Piper longum fruit. Mater. Sci. Eng. C Mater. Biol. Appl. 2014, 34, 115-122.
https://doi.org/10.1016/j.msec.2013.08.039

[23]. Dinesh, D.; Murugan, K.; Madhiyazhagan, P.; Panneerselvam, C.; Kumar, P. M.; Nicoletti, M.; Jiang, W.; Benelli, G.; Chandramohan, B.; Suresh, U. Mosquitocidal and antibacterial activity of green-synthesized silver nanoparticles from Aloe vera extracts: towards an effective tool against the malaria vector Anopheles stephensi? Parasitol. Res. 2015, 114, 1519-1529.
https://doi.org/10.1007/s00436-015-4336-z

[24]. Sukirtha, R.; Priyanka, K. M.; Antony, J. J.; Kamalakkannan, S.; Thangam, R.; Gunasekaran, P.; Krishnan, M.; Achiraman, S. Cytotoxic effect of Green synthesized silver nanoparticles using Melia azedarach against in vitro HeLa cell lines and lymphoma mice model. Process Biochem. 2012, 47, 273-279.
https://doi.org/10.1016/j.procbio.2011.11.003

[25]. Kaur, G.; Kalia, A.; Sodhi, H. S. Size controlled, time-efficient biosynthesis of silver nanoparticles from Pleurotus florida using ultra-violet, visible range, and microwave radiations. Inorg. Nano-met. Chem. 2020, 50, 35-41.
https://doi.org/10.1080/24701556.2019.1661466

[26]. Das, B.; De, A.; Podder, S.; Das, S.; Ghosh, C. K.; Samanta, A. Green biosynthesis of silver nanoparticles using Dregea volubilis flowers: Characterization and evaluation of antioxidant, antidiabetic and antibacterial activity. Inorg. Nano-met. Chem. 2021, 51, 1066-1079.
https://doi.org/10.1080/24701556.2020.1814331

[27]. Khorrami, S.; Zarrabi, A.; Khaleghi, M.; Danaei, M.; Mozafari, M. R. Selective cytotoxicity of green synthesized silver nanoparticles against the MCF-7 tumor cell line and their enhanced antioxidant and antimicrobial properties. Int. J. Nanomedicine 2018, 13, 8013-8024.
https://doi.org/10.2147/IJN.S189295

[28]. Kirtikar, K.; Basu, B.; Blatter, E. Indian medicinal plants. International Book Distributors, Delhi, India, Lalit Mohan Basu, Allahabad, India, 1935. https://www.indianculture.gov.in/ebooks/indian-medicinal-plants (accessed January 10, 2022).

[29]. Sarkar, T.; Ghosh, P.; Poddar, S.; Choudhury, S.; Sarkar, A.; Chatterjee, S. Oxalis corniculata Linn. (Oxalidaceae): A brief review. J. Pharmacogn. Phytochem. 2020, 9, 651-655.
https://doi.org/10.22271/tpi.2020.v9.i7a.5049

[30]. Khan, M. R.; Marium, A.; Shabbir, M.; Saeed, N.; Bokhari, J. Antioxidant and hepatoprotective effects of Oxalis corniculata against carbon tetrachloride (CCl4) induced injuries in rat. Afr. J. Pharm. Pharmacol. 2012, 6, 2255-2267.
https://doi.org/10.5897/AJPP11.370

[31]. Salahuddin, H.; Mansoor, Q.; Batool, R.; Farooqi, A. A.; Mahmood, T.; Ismail, M. Anticancer activity of Cynodon dactylon and Oxalis corniculata on Hep2 cell line. Cell. Mol. Biol. (Noisy-le-grand) 2016, 62, 60-63.

[32]. Rehman, A.; Rehman, A.; Ahmad, I. Antibacterial, antifungal, and insecticidal potentials ofOxalis corniculataand its isolated compounds. Int. J. Anal. Chem. 2015, 2015, 1-5.
https://doi.org/10.1155/2015/842468

[33]. Rahman, M. S.; Khan, M. M. H.; Jamal, M. A. H. M. Anti-bacterial Evaluation and Minimum Inhibitory Concentration Analysis of Oxalis corniculata and Ocimum santum against Bacterial Pathogens. Biotechnology (Faisalabad) 2010, 9, 533-536.
https://doi.org/10.3923/biotech.2010.533.536

[34]. Durgawale, P. P.; Hendre, A. S.; Phatak, R. S. Gc/ms characterization, antioxidant and free radical scavenging capacities of methanolic extract of Oxalis corniculata Linn: An ayurvedic herb. Rasayan J. Chem. 2015, 8, 271-278.

[35]. Kritikar, K. R.; Basu, B. D. Indian Medicinal Plants. In: Compositae, Vol. 2; nternational Book Distributors: Dehradun, 1987.

[36]. Hashemi, Z.; Mizwari, Z. M.; Mohammadi-Aghdam, S.; Mortazavi-Derazkola, S.; Ali Ebrahimzadeh, M. Sustainable green synthesis of silver nanoparticles using Sambucus ebulus phenolic extract (AgNPs@SEE): Optimization and assessment of photocatalytic degradation of methyl orange and their in vitro antibacterial and anticancer activity. Arab. J. Chem. 2022, 15, 103525.
https://doi.org/10.1016/j.arabjc.2021.103525

[37]. Alizadeh, S. R.; Seyedabadi, M.; Montazeri, M.; Khan, B. A.; Ebrahimzadeh, M. A. Allium paradoxum extract mediated green synthesis of SeNPs: Assessment of their anticancer, antioxidant, iron chelating activities, and antimicrobial activities against fungi, ATCC bacterial strains, Leishmania parasite, and catalytic reduction of methylene blue. Mater. Chem. Phys. 2023, 296, 127240.
https://doi.org/10.1016/j.matchemphys.2022.127240

[38]. Sandeep, S.; S. Santhosh, A.; Kumara Swamy, N.; S. Suresh, G.; S. Melo, J.; Mallu, P. Biosynthesis of silver nanoparticles using Convolvulus pluricaulis leaf extract and assessment of their catalytic, electrocatalytic and phenol remediation properties. Adv. Mater. Lett. 2016, 7, 383-389.
https://doi.org/10.5185/amlett.2016.6067

[39]. Pandit, R. Green synthesis of silver nanoparticles from seed extract of Brassica nigra and its antibacterial activity. Nusant. Biosci. 1970, 7, 15-19.
https://doi.org/10.13057/nusbiosci/n070103

[40]. Elumalai, K.; Velmurugan, S. Green synthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from the leaf extract of Azadirachta indica (L.). Appl. Surf. Sci. 2015, 345, 329-336.
https://doi.org/10.1016/j.apsusc.2015.03.176

[41]. Kumar, B.; Kumari, S.; Cumbal, L.; Debut, A. Lantana camara berry for the synthesis of silver nanoparticles. Asian Pac. J. Trop. Biomed. 2015, 5, 192-195.
https://doi.org/10.1016/S2221-1691(15)30005-8

[42]. Sankar, R.; Karthik, A.; Prabu, A.; Karthik, S.; Shivashangari, K. S.; Ravikumar, V. Origanum vulgare mediated biosynthesis of silver nanoparticles for its antibacterial and anticancer activity. Colloids Surf. B Biointerfaces 2013, 108, 80-84.
https://doi.org/10.1016/j.colsurfb.2013.02.033

[43]. Bose, D.; Chatterjee, S. Antibacterial activity of green synthesized silver nanoparticles using Vasaka (Justicia adhatoda L.) leaf extract. Indian J. Microbiol. 2015, 55, 163-167.
https://doi.org/10.1007/s12088-015-0512-1

[44]. Nasrollahi, A.; Pourshamsian, K.; Mansourkiaee, P. Antifungal activity of silver nanoparticles on some of fungi. International journal of nano dimension 2011, 1, 233-239.

[45]. Mori, Y.; Ono, T.; Miyahira, Y.; Nguyen, V. Q.; Matsui, T.; Ishihara, M. Antiviral activity of silver nanoparticle/chitosan composites against H1N1 influenza A virus. Nanoscale Res. Lett. 2013, 8, 93.
https://doi.org/10.1186/1556-276X-8-93

[46]. Haggag, E. G.; Elshamy, A. M.; Rabeh, M. A.; Gabr, N. M.; Salem, M.; Youssif, K. A.; Samir, A.; Bin Muhsinah, A.; Alsayari, A.; Abdelmohsen, U. R. Antiviral potential of green synthesized silver nanoparticles of Lampranthus coccineus and Malephora lutea. Int. J. Nanomedicine 2019, 14, 6217-6229.
https://doi.org/10.2147/IJN.S214171

[47]. Jacob, S. J. P.; Prasad, V. L. S.; Sivasankar, S.; Muralidharan, P. Biosynthesis of silver nanoparticles using dried fruit extract of Ficus carica - Screening for its anticancer activity and toxicity in animal models. Food Chem. Toxicol. 2017, 109, 951-956.
https://doi.org/10.1016/j.fct.2017.03.066

[48]. Lakshmanan; Sathiyaseelan; Kalaichelvan; Murugesan Plant-mediated synthesis of silver nanoparticles using fruit extract of Cleome viscosa L.: Assessment of their antibacterial and anticancer activity. Karbala Int. J. Mod. Sci. 2018, 4, 61-68.
https://doi.org/10.1016/j.kijoms.2017.10.007

[49]. Dhand, V.; Soumya, L.; Bharadwaj, S.; Chakra, S.; Bhatt, D.; Sreedhar, B. Green synthesis of silver nanoparticles using Coffea arabica seed extract and its antibacterial activity. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 58, 36-43.
https://doi.org/10.1016/j.msec.2015.08.018

[50]. Al-Sheddi, E. S.; Farshori, N. N.; Al-Oqail, M. M.; Al-Massarani, S. M.; Saquib, Q.; Wahab, R.; Musarrat, J.; Al-Khedhairy, A. A.; Siddiqui, M. A. Anticancer potential of green synthesized silver nanoparticles using extract of Nepeta deflersiana against human cervical cancer cells (HeLA). Bioinorg. Chem. Appl. 2018, 2018, 9390784.
https://doi.org/10.1155/2018/9390784

[51]. Jadhav, K.; Deore, S.; Dhamecha, D.; H R, R.; Jagwani, S.; Jalalpure, S.; Bohara, R. Phytosynthesis of silver nanoparticles: Characterization, biocompatibility studies, and anticancer activity. ACS Biomater. Sci. Eng. 2018, 4, 892-899.
https://doi.org/10.1021/acsbiomaterials.7b00707

[52]. Mollick, M. M. R.; Rana, D.; Dash, S. K.; Chattopadhyay, S.; Bhowmick, B.; Maity, D.; Mondal, D.; Pattanayak, S.; Roy, S.; Chakraborty, M.; Chattopadhyay, D. Studies on green synthesized silver nanoparticles using Abelmoschus esculentus (L.) pulp extract having anticancer (in vitro) and antimicrobial applications. Arab. J. Chem. 2019, 12, 2572-2584.
https://doi.org/10.1016/j.arabjc.2015.04.033

[53]. Naraginti, S.; Li, Y. Preliminary investigation of catalytic, antioxidant, anticancer and bactericidal activity of green synthesized silver and gold nanoparticles using Actinidia deliciosa. J. Photochem. Photobiol. B 2017, 170, 225-234.
https://doi.org/10.1016/j.jphotobiol.2017.03.023

[54]. Kummara, S.; Patil, M. B.; Uriah, T. Synthesis, characterization, biocompatible and anticancer activity of green and chemically synthesized silver nanoparticles - A comparative study. Biomed. Pharmacother. 2016, 84, 10-21.
https://doi.org/10.1016/j.biopha.2016.09.003

[55]. Abdelghany, T. M.; Al-Rajhi, A. M. H.; Al Abboud, M. A.; Alawlaqi, M. M.; Ganash Magdah, A.; Helmy, E. A. M.; Mabrouk, A. S. Recent advances in green synthesis of silver nanoparticles and their applications: About future directions. A review. Bionanoscience 2018, 8, 5-16.
https://doi.org/10.1007/s12668-017-0413-3

[56]. Tang, S.; Zheng, J. Antibacterial activity of silver nanoparticles: Structural effects. Adv. Healthc. Mater. 2018, 7, e1701503.
https://doi.org/10.1002/adhm.201701503

[57]. Jayashree, S.; Vani, G. S. In vitro study on antibacterial activity of aqueous extract and silver nanoparticles of Andrographis paniculata. Int. J. Curr. Microbiol. Appl. Sci. 2016, 5, 400-406.
https://doi.org/10.20546/ijcmas.2016.505.041

[58]. Elgorban, A. M.; Al-Rahmah, A. N.; Sayed, S. R.; Hirad, A.; Mostafa, A. A.-F.; Bahkali, A. H. Antimicrobial activity and green synthesis of silver nanoparticles usingTrichoderma viride. Biotechnol. Biotechnol. Equip. 2016, 30, 299-304.
https://doi.org/10.1080/13102818.2015.1133255

[59]. Prasannaraj, G.; Venkatachalam, P. Green engineering of biomolecule-coated metallic silver nanoparticles and their potential cytotoxic activity against cancer cell lines. Adv. Nat. Sci. Nanosci. Nanotechnol. 2017, 8, 025001.
https://doi.org/10.1088/2043-6254/aa6d2c

[60]. Abdel-Fattah, W. I.; W Ali, G. On the anti-cancer activities of silver nanoparticles. J. Appl. Biotechnol. Bioeng. 2018, 5, 43-46.
https://doi.org/10.15406/jabb.2018.05.00116

[61]. Firdhouse, J.; Lalitha, P. Apoptotic efficacy of biogenic silver nanoparticles on human breast cancer MCF-7 cell lines. Prog. Biomater. 2015, 4, 113-121.
https://doi.org/10.1007/s40204-015-0042-2

[62]. Salehi, S.; Shandiz, S. A. S.; Ghanbar, F.; Darvish, M. R.; Ardestani, M. S.; Mirzaie, A.; Jafari, M. Phytosynthesis of silver nanoparticles using Artemisia marschalliana Sprengel aerial part extract and assessment of their antioxidant, anticancer, and antibacterial properties. Int. J. Nanomedicine 2016, 11, 1835-1846.
https://doi.org/10.2147/IJN.S99882

[63]. Saravanan, M.; Barabadi, H.; Ramachandran, B.; Venkatraman, G.; Ponmurugan, K. Emerging plant-based anti-cancer green nanomaterials in present scenario. In Engineered Nanomaterials and Phytonanotechnology: Challenges for Plant Sustainability; Elsevier, 2019; pp. 291-318.
https://doi.org/10.1016/bs.coac.2019.09.001

[64]. Barabadi, H.; Hosseini, O.; Damavandi Kamali, K.; Jazayeri Shoushtari, F.; Rashedi, M.; Haghi-Aminjan, H.; Saravanan, M. Emerging theranostic silver nanomaterials to combat lung cancer: A systematic review. J. Cluster Sci. 2020, 31, 1-10.
https://doi.org/10.1007/s10876-019-01639-z


How to cite


Ebrahimzadeh, M.; Alizadeh, S.; Hashemi, Z. Eur. J. Chem. 2023, 14(2), 202-210. doi:10.5155/eurjchem.14.2.202-210.2406
Ebrahimzadeh, M.; Alizadeh, S.; Hashemi, Z. Discovery of high antibacterial and antitumor effects against multi-drug resistant clinically isolated bacteria and MCF-7 and AGS cell lines by biosynthesized silver nanoparticles using Oxalis corniculata extract. Eur. J. Chem. 2023, 14(2), 202-210. doi:10.5155/eurjchem.14.2.202-210.2406
Ebrahimzadeh, M., Alizadeh, S., & Hashemi, Z. (2023). Discovery of high antibacterial and antitumor effects against multi-drug resistant clinically isolated bacteria and MCF-7 and AGS cell lines by biosynthesized silver nanoparticles using Oxalis corniculata extract. European Journal of Chemistry, 14(2), 202-210. doi:10.5155/eurjchem.14.2.202-210.2406
Ebrahimzadeh, Mohammad, Seyedeh Roya Alizadeh, & Zahra Hashemi. "Discovery of high antibacterial and antitumor effects against multi-drug resistant clinically isolated bacteria and MCF-7 and AGS cell lines by biosynthesized silver nanoparticles using Oxalis corniculata extract." European Journal of Chemistry [Online], 14.2 (2023): 202-210. Web. 4 Oct. 2023
Ebrahimzadeh, Mohammad, Alizadeh, Seyedeh, AND Hashemi, Zahra. "Discovery of high antibacterial and antitumor effects against multi-drug resistant clinically isolated bacteria and MCF-7 and AGS cell lines by biosynthesized silver nanoparticles using Oxalis corniculata extract" European Journal of Chemistry [Online], Volume 14 Number 2 (30 June 2023)

The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item



DOI Link: https://doi.org/10.5155/eurjchem.14.2.202-210.2406


CrossRef | Scilit | GrowKudos | Researchgate | Publons | ScienceGate | Scite | Lens | OUCI

WorldCat Paperbuzz | LibKey Citeas | Dimensions | Semanticscholar | Plumx | Kopernio | Zotero | Mendeley

ZoteroSave to Zotero MendeleySave to Mendeley



European Journal of Chemistry 2023, 14(2), 202-210 | doi: https://doi.org/10.5155/eurjchem.14.2.202-210.2406 | Get rights and content

Refbacks

  • There are currently no refbacks.




Copyright (c) 2023 Authors

Creative Commons License
This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at http://www.eurjchem.com/index.php/eurjchem/pages/view/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (http://www.eurjchem.com/index.php/eurjchem/pages/view/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).



© Copyright 2010 - 2023  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2010-2023 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.