European Journal of Chemistry

Co-crystal structure of a dinuclear (Zn-Y) and a trinuclear (Zn-Y-Zn) complexes derived from a Schiff base ligand

Crossmark


Main Article Content

Mamour Sarr
Mayoro Diop
Ibrahima Elhadj Thiam
Mohamed Gaye
Aliou Hamady Barry
Natalia Alvarez
Javier Ellena

Abstract

The present investigation describes the synthesis and structural study of a metal-zinc ligand [ZnL.H2O], which was used to generate three dimensional supramolecular complex formulated as [Y{Zn(L)(SCN)}(SCN)2].[Y{Zn(L)(SCN)}2(DMF)2].(NO3). The title compound crystallizes in the triclinic space group P-1 with the following unit cell parameters: a = 14.8987(7) Å, b = 15.6725(8) Å, c = 19.2339(10) Å, a = 94.610(4)°, β = 103.857(4)°, γ = 101.473(4)°, V = 4234.4(4) Å3, Z = 2, R1 = 0.063 and wR2 = 0.96. For this compound, the structure reveals that one heterodinuclear unit [Y{Zn(L)(SCN)}(SCN)2] is co-crystallized with a heterotrinuclear unit [Y{Zn(L)(SCN)}2(DMF)2].(NO3). In the dinuclear moiety, the organic molecule acts as a hexadentate ligand and in the trinuclear unit, it acts as a pentadentate ligand with one of the oxygen methoxy group remaining uncoordinated. In both units the coordination environment of the zinc metal can be described as distorted square pyramidal. In the dinuclear unit the Y(III) is hexacoordinated while it is octacoordinated in the trinuclear unit. The environment of the Y(III) can be described as a distorted octahedral geometry in the dinuclear and as a distorted square antiprism in the trinuclear units respectively.


icon graph This Abstract was viewed 2126 times | icon graph Article PDF downloaded 872 times icon graph Article CIF FILE downloaded 0 times

How to Cite
(1)
Sarr, M.; Diop, M.; Thiam, I. E.; Gaye, M.; Barry, A. H.; Alvarez, N.; Ellena, J. Co-Crystal Structure of a Dinuclear (Zn-Y) and a Trinuclear (Zn-Y-Zn) Complexes Derived from a Schiff Base Ligand. Eur. J. Chem. 2018, 9, 67-73.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Costes, J. P.; Dahan, F.; Dupuis, A.; Laurent, J. P. Inorg. Chem. 1997, 36, 4284-4286.
https://doi.org/10.1021/ic970720f

[2]. Costes, J. P.; Dahan, F.; Dupuis, A.; Laurent, J. P. Inorg. Chem. 2000, 39, 169-173.
https://doi.org/10.1021/ic990864p

[3]. Benelli, C.; Gatteschi, D. Chem. Rev. 2002, 102, 2369-2387.
https://doi.org/10.1021/cr010303r

[4]. Sakamoto, M.; Manseki, K.; Okawa, H. Coord. Chem. Rev. 2001, 219-221, 379-414.
https://doi.org/10.1016/S0010-8545(01)00341-1

[5]. Costes, J. P.; Dahan, F.; Wernsdorfer, W. Inorg. Chem. 2006, 45, 5-7.
https://doi.org/10.1021/ic050563h

[6]. Laurent, J. P.; Dahan, F.; Dupuis, A. Inorg. Chem. 2000, 39, 5994-6000.
https://doi.org/10.1021/ic000666u

[7]. Han, S. D.; Zhao, J. P.; Chen, Y. Q.; Liu, S. J.; Miao, X. H.; Hu, T. L.; Bu, X. H. Cryst. Growth Des. 2014, 14, 2-5.
https://doi.org/10.1021/cg401335n

[8]. Das, S.; Sorace, L.; Guha, A.; Sanyal, R.; Kara, H.; Caneschi, A.; Zangrando, E.; Das, D. Eur. J. Inorg. Chem. 2014, 17, 2753-2765.
https://doi.org/10.1002/ejic.201301581

[9]. Amatori, S.; Ambrosi, G.; Borgogelli, E.; Fanelli, M.; Formica, M.; Fusi, V.; Giorgi, L.; Macedi, E.; Micheloni, M.; Paoli, P.; Rossi, P.; Tassoni, A. Inorg. Chem. 2014, 53, 4560-4569.
https://doi.org/10.1021/ic5001649

[10]. Aboshyan-Sorgho, L.; Nozary, H.; Aebischer, A.; Bunzli, J. C. G.; Morgantini, P. Y.; Kittilstved, K. R.; Hauser, A.; Eliseeva, S. V.; Petoud, S.; Piguet, C. J. Am. Chem. Soc. 2012, 134, 12675-12684.
https://doi.org/10.1021/ja304009b

[11]. Cancino, P.; Paredes-Garcia, V.; Aliaga, C.; Aguirre, P.; Aravena, D.; Spodine, E. Catal. Sci. Technol. 2017, 7, 231-242.
https://doi.org/10.1039/C6CY02115H

[12]. Yu, T.; Ma, H.; Zhang, C.; Pang, H.; Lia, S.; Liua, H. Dalton Trans. 2013, 42, 16328-16333.
https://doi.org/10.1039/c3dt51983j

[13]. Li, L.; Zou, J. Y.; You, S. Y.; Cui, H. M.; Zeng, G. P.; Cui, J. Z. Dalton Trans. 2017, 46, 16432-16438.
https://doi.org/10.1039/C7DT03545D

[14]. Wen, H. R.; Dong, P. P.; Liu, S. J.; Liao, J. S.; Liang, F. Y.; Liu, C. M. Dalton Trans. 2017, 46, 1153-1162.
https://doi.org/10.1039/C6DT04027F

[15]. Yang, X.; Schipper, D.; Jones, R. A.; Lytwak, L. A.; Holliday, B. J.; Huang, S. J. Am. Chem. Soc. 2013, 135, 8468-8471.
https://doi.org/10.1021/ja4031243

[16]. Marinescu, G.; Maxim, C.; Clerac, R.; Andruh, M. Inorg. Chem. 2015, 54, 5621-5623.
https://doi.org/10.1021/acs.inorgchem.5b00889

[17]. Salmon, L.; Thuery, P.; Riviere, E.; Ephritikhine, M. Inorg. Chem. 2006, 45, 83-93.
https://doi.org/10.1021/ic0512375

[18]. Costes, J. P.; Tomoka, Y.; Masaaki K.; Laure V. Inorg. Chem. 2009, 48, 5555-5561.
https://doi.org/10.1021/ic900142h

[19]. Zheng, Z. P.; Ou, Y. J.; Hong, X. J.; Wei, L. M.; Wan, L. T.; Zhou, W. H.; Zhan, Q. G.; Cai, Y. P. Inorg. Chem. 2014, 53, 9625-9632.
https://doi.org/10.1021/ic501118b

[20]. Ishikawa, N.; Sugita, M.; Wernsdorfer, W. J. Am. Chem. Soc. 2005, 127, 3650-3651.
https://doi.org/10.1021/ja0428661

[21]. Paulovic, J.; Cimpoesu, F.; Ferbinteanu, M.; Hirao, K. J. Am. Chem. Soc. 2004, 126, 3321-3331.
https://doi.org/10.1021/ja030628k

[22]. Mishra, A.; Wernsdorfer, W.; Abboud, K. A.; Christou, G. J. Am. Chem. Soc. 2004, 126, 15648-15649.
https://doi.org/10.1021/ja0452727

[23]. Vigato, P. A.; Tamburini S. Coord. Chem. Rev. 2004, 248, 1717-2128.
https://doi.org/10.1016/j.cct.2003.09.003

[24]. Maurice, R.; Vendier, L.; Costes, J. -P. Inorg. Chem. 2011, 50, 11075-11081.
https://doi.org/10.1021/ic201623e

[25]. Bruker, 2016, APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

[26]. Sheldrick, G. M. Acta Cryst. A 2015, 71, 3-8.
https://doi.org/10.1107/S2053273314026370

[27]. Sheldrick, G. M. Acta Cryst. C 2015, 71, 3-8.
https://doi.org/10.1107/S2053229614024218

[28]. Farrugia, L. J. J. Appl. Cryst. 2012, 45, 849-854.
https://doi.org/10.1107/S0021889812029111

[29]. Addison, A. W.; Rao, T. N.; Reedijk, J.; van Rijn, J.; Verschoor, G. C. J. Chem. Soc. Dalton Trans. 1984, 1349-1356.
https://doi.org/10.1039/DT9840001349

[30]. Geary, W. J. Coord. Chem. Rev. 1971, 7, 81-122.
https://doi.org/10.1016/S0010-8545(00)80009-0

[31]. Masoudias, A.; Montazerozohori, M.; Naghiha, R.; Assoud, A.; McArdle, P.; Shalamzari, M. S. Mater. Sci. Eng., C 2016, 61, 809-823.
https://doi.org/10.1016/j.msec.2016.01.017

[32]. Basak, S.; Sen, S.; Banerjee, S.; Mitra, S.; Rosair, G.; Rodriguez, M. T. G. Polyhedron 2007, 26, 5104-5112.
https://doi.org/10.1016/j.poly.2007.07.025

[33]. Li, H. H.; You, Z. L.; Zhang, C. L.; Yang, M.; Gao, L. N.; Wang, L. Inorg. Chem. Commun. 2013, 29, 118-122.
https://doi.org/10.1016/j.inoche.2012.12.023

[34]. Sutter, J. P.; Dhers, S.; Costes, J. P.; Duhayon, C. C. R. Chimie 2008, 11, 1200-1206.
https://doi.org/10.1016/j.crci.2008.04.015

Supporting Agencies

The FONDATION SONATEL, Senegal
Most read articles by the same author(s)

Most read articles by the same author(s)

TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).