European Journal of Chemistry

Crystal structures of bis[1-(1-hydroxypropan-2-ylidene)thiosemicarbazide-κ3S,N,O)cobalt(III)-tetra(thiocyanato-κN) cobalt(II) methanol solvate, bis{1-(1-hydroxypropan-2-ylidene)thiosemicarbazide-κ3S,N,O}nickel(II) bis(thiocyanate) and (1-(1-hydroxypropan-2-ylidene)thiosemicarbazide-κ3S,N,O)bis(thiocyanato-κN)zinc(II)

Crossmark


Main Article Content

Cheikh Ndoye
Gregory Excoffier
Gorgui Awa Seck
Ousmane Diouf
IbraIbrahima Elhadji Thiam
Mamadou Sidibe
Mohamed Gaye

Abstract

The reactions of Schiff base 1-(1-hydroxypropan-2-ylidene)thiosemicarbazide (H2L), with salt of thiocyanate metal (II) (Co, Ni, or Zn), provided one dinuclear and two new mononuclear complexes, formulated respectively as {[Co(LH)2]2·[Co(NCS)4] ·2(MeOH)} (1), {[Ni(H2L)2]·[(NCS)2]} (2) and [Zn(H2L)(NCS)2] (3). These compounds have been studied and characterized by elemental analysis, infrared, and ultraviolet-visible (UV-vis) spectroscopies. The structures of the three complexes have been resolved by X-ray crystallography technique. The dinuclear complex 1 crystallizes in the orthorhombic space group Fdd2 with the following unit cell parameters a = 33.1524 (3) Å, b = 19.3780 (2) Å, c = 13.2533 (2) Å, V = 8514.28 (17) Å3, Z = 16, R1 = 0.025 and wR2 = 0.063, the mononuclear complex 2 crystallizes in the monoclinic space group P21/n with the following unit cell parameters a = 11.5752 (1) Å, b = 12.3253 (1) Å, c = 14.2257 (2) Å, β = 106.855 (1)°, V = 1942 (4) Å3, Z = 4, R1 = 0.038 and wR2 = 0.106 and  the mononuclear complex 3 crystallizes in the monoclinic space group P21/c with the following unit cell parameters a = 6.1121 (2) Å, b = 26.8272 (7)  Å, c = 8.0292 (2) Å, β = 99.876 (3)°, V = 1297.04 (6) Å3, Z = 4, R1 = 0.026 and wR2 = 0.057. The asymmetric unit of Complex 1 contains one cationic unit in which the ligand acts in its monodeprotonated form in tridentate fashion and one half of the anionic unit containing two thiocyanate co-ligands. In complexes 2 and 3, the ligand acts in its neutral form in a tridentate manner. In complex 2, two ligand molecules coordinate the Ni(II) center, and the thiocyanate moieties remains uncoordinated. In complex 3, the Zn(II) is coordinated by one ligand molecule and two thiocyanate groups through their nitrogen atoms. Numerous hydrogen bonds consolidated the structures of complexes 1, 2, and 3 in a three-dimensional network.


icon graph This Abstract was viewed 1305 times | icon graph Article PDF downloaded 356 times icon graph Article CIF FILE downloaded 0 times icon graph Article CIF FILE downloaded 0 times icon graph Article CIF FILE downloaded 0 times

How to Cite
(1)
Ndoye, C.; Excoffier, G.; Seck, G. A.; Diouf, O.; Thiam, I. E.; Sidibe, M.; Gaye, M. Crystal Structures of bis[1-(1-Hydroxypropan-2-ylidene)thiosemicarbazide-κ3S,N,O)cobalt(III)-tetra(thiocyanato-κN) cobalt(II) Methanol Solvate, bis{1-(1-Hydroxypropan-2-ylidene)thiosemicarbazide-κ3S,N,O}nickel(II) bis(thiocyanate) and (1-(1-Hydroxypropan-2-ylidene)thiosemicarbazide-κ3S,N,O)bis(thiocyanato-κN)zinc(II). Eur. J. Chem. 2022, 13, 196-205.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Hosseinpoor, H.; Moghadam Farid, S.; Iraji, A.; Askari, S.; Edraki, N.; Hosseini, S.; Jamshidzadeh, A.; Larijani, B.; Attarroshan, M.; Pirhadi, S.; Mahdavi, M.; Khoshneviszadeh, M. Anti-melanogenesis and anti-tyrosinase properties of aryl-substituted acetamides of phenoxy methyl triazole conjugated with thiosemicarbazide: Design, synthesis and biological evaluations. Bioorg. Chem. 2021, 114, 104979.
https://doi.org/10.1016/j.bioorg.2021.104979

[2]. Tokalı, F. S.; Taslimi, P.; Usanmaz, H.; Karaman, M.; Şendil, K. Synthesis, characterization, biological activity and molecular docking studies of novel schiff bases derived from thiosemicarbazide: Biochemical and computational approach. J. Mol. Struct. 2021, 1231, 129666.
https://doi.org/10.1016/j.molstruc.2020.129666

[3]. Bakherad, Z.; Mohammadi-Khanaposhtani, M.; Sadeghi-Aliabadi, H.; Rezaei, S.; Fassihi, A.; Bakherad, M.; Rastegar, H.; Biglar, M.; Saghaie, L.; Larijani, B.; Mahdavi, M. New thiosemicarbazide-1,2,3-triazole hybrids as potent α-glucosidase inhibitors: Design, synthesis, and biological evaluation. J. Mol. Struct. 2019, 1192, 192-200.
https://doi.org/10.1016/j.molstruc.2019.04.082

[4]. Aboseada, H. A.; Hassanien, M. M.; El-Sayed, I. H.; Saad, E. A. Schiff base 4-ethyl-1-(pyridin-2-yl) thiosemicarbazide up-regulates the antioxidant status and inhibits the progression of Ehrlich solid tumor in mice. Biochem. Biophys. Res. Commun. 2021, 573, 42-47.
https://doi.org/10.1016/j.bbrc.2021.07.102

[5]. Altalhi, A. A.; Hashem, H. E.; Negm, N. A.; Mohamed, E. A.; Azmy, E. M. Synthesis, characterization, computational study, and screening of novel 1-phenyl-4-(2-phenylacetyl)-thiosemicarbazide derivatives for their antioxidant and antimicrobial activities. J. Mol. Liq. 2021, 333, 115977.
https://doi.org/10.1016/j.molliq.2021.115977

[6]. Munaretto, L. S.; Ferreira, M.; Gouvêa, D. P.; Bortoluzzi, A. J.; Assunção, L. S.; Inaba, J.; Creczynski-Pasa, T. B.; Sá, M. M. Synthesis of isothio semicarbazones of potential antitumoral activity through a multicomponent reaction involving allylic bromides, carbonyl compounds and thiosemicarbazide. Tetrahedron 2020, 76, 131231.
https://doi.org/10.1016/j.tet.2020.131231

[7]. Patel, D. B.; Darji, D. G.; Patel, K. R.; Rajani, D. P.; Rajani, S. D.; Patel, H. D. Synthesis of novel quinoline‐thiosemicarbazide hybrids and evaluation of their biological activities, molecular docking, molecular dynamics, pharmacophore model studies, and ADME‐Tox properties. J. Heterocycl. Chem. 2020, 57, 1183-1200.
https://doi.org/10.1002/jhet.3855

[8]. Patel, D. B.; Patel, K. D.; Prajapati, N. P.; Patel, K. R.; Rajani, D. P.; Rajani, S. D.; Shah, N. S.; Zala, D. D.; Patel, H. D. Design, synthesis, and biological and in silico study of fluorine‐containing quinoline hybrid thiosemicarbazide analogues. J. Heterocycl. Chem. 2019, 56, 2235-2252.
https://doi.org/10.1002/jhet.3617

[9]. Šarkanj, B.; Molnar, M.; Čačić, M.; Gille, L. 4-Methyl-7-hydroxy coumarin antifungal and antioxidant activity enhancement by substitution with thiosemicarbazide and thiazolidinone moieties. Food Chem. 2013, 139, 488-495.
https://doi.org/10.1016/j.foodchem.2013.01.027

[10]. Panneerselvam, T.; Mandhadi, J. R. Microwave assisted synthesis and antimicrobial evaluation of novel substituted thiosemicarbazide derivatives of pyrimidine. J. Heterocycl. Chem. 2020, 57, 3082-3088.
https://doi.org/10.1002/jhet.4013

[11]. Acharya, P. T.; Bhavsar, Z. A.; Jethava, D. J.; Patel, D. B.; Patel, H. D. A review on development of bio-active thiosemicarbazide derivatives: Recent advances. J. Mol. Struct. 2021, 1226, 129268.
https://doi.org/10.1016/j.molstruc.2020.129268

[12]. Refat, M. S.; El-Deen, I. M.; Anwer, Z. M.; El-Ghol, S. Spectroscopic studies and biological evaluation of some transition metal complexes of Schiff-base ligands derived from 5-arylazo-salicylaldehyde and thiosemicarbazide. J. Coord. Chem. 2009, 62, 1709-1718.
https://doi.org/10.1080/00958970802684205

[13]. Wang, M.; Wang, L.-F.; Li, Y.-Z.; Li, Q.-X.; Xu, Z.-D.; Qu, D.-M. Transit. Met. Chem. 2001, 26, 307-310.
https://doi.org/10.1023/A:1007159301849

[14]. Yousef, T. A.; Abu El-Reash, G. M.; El-Gamal, O.; Sharaa, B. M. Ligational, DFT, optical band gap and biological studies on Mn(II), Co(II) and Ni(II) complexes of ethyl and allyl thiosemicarbazides ending by thiazole group. J. Mol. Liq. 2018, 251, 423-437.
https://doi.org/10.1016/j.molliq.2017.12.022

[15]. Cortés, L.; Okio, C. K. Y. A.; Brandão, P. F. B. Tin(IV) complexes of 1,5-diphenylthiocarbazone and thiosemicarbazide: Synthesis, X-ray characterization, and biological activity. Phosphorus Sulfur Silicon Relat. Elem. 2011, 186, 1356-1360.
https://doi.org/10.1080/10426507.2010.543105

[16]. Huedo, C.; Zani, F.; Mendiola, A.; Pradhan, S.; Sinha, C.; López-Torres, E. Synthesis, antimicrobial activity and molecular docking of di- and triorganotin (IV) complexes with thiosemicarbazide derivatives: Synthesis, antimicrobial activity and docking of organotin complexes. Appl. Organomet. Chem. 2019, 33, e4700.
https://doi.org/10.1002/aoc.4700

[17]. Yusof, E. N. M.; Ravoof, T. B. S. A.; Page, A. J. Cytotoxicity of Tin(IV)-based compounds: A review. Polyhedron 2021, 198, 115069.
https://doi.org/10.1016/j.poly.2021.115069

[18]. Anita, K.; Rajmuhon Singh, N. Absorption spectral analysis of 4f-4f transitions for the complexation of Pr(III) and Nd(III) with thiosemicarbazide in absence and presence of Zn(II) in aqueous and organic solvents. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2011, 81, 117-121.
https://doi.org/10.1016/j.saa.2011.05.065

[19]. Panja, A.; Eichhorn, D. M. Mono- and di-nuclear nickel(II) complexes with mixed N/S-donor ligands: Syntheses, structures and physical properties. Inorganica Chim. Acta 2012, 391, 88-92.
https://doi.org/10.1016/j.ica.2012.04.042

[20]. Arion, V.; Wieghardt, K.; Weyhermueller, T.; Bill, E.; Leovac, V.; Rufinska, A. Synthesis, structure, magnetism, and spectroscopic properties of some mono- and dinuclear nickel complexes containing noninnocent pentane-2,4-dione bis(S-alkylisothiosemicarbazonate)-derived ligands. Inorg. Chem. 1997, 36, 661-669.
https://doi.org/10.1021/ic960802o

[21]. Raman, N.; Selvan, A.; Manisankar, P. Spectral, magnetic, biocidal screening, DNA binding and photocleavage studies of mononuclear Cu(II) and Zn(II) metal complexes of tricoordinate heterocyclic Schiff base ligands of pyrazolone and semicarbazide/thiosemicarbazide based derivatives. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2010, 76, 161-173.
https://doi.org/10.1016/j.saa.2010.03.007

[22]. Chandra, S.; Sangeetika, X. EPR, magnetic and spectral studies of copper(II) and nickel(II) complexes of schiff base macrocyclic ligand derived from thiosemicarbazide and glyoxal. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2004, 60, 147-153.
https://doi.org/10.1016/S1386-1425(03)00220-8

[23]. Shaikh, A.; Mukherjee, P.; Ta, S.; Bhattacharyya, A.; Ghosh, A.; Das, D. Oxidative cyclization of thiosemicarbazide: a chemodosimetric approach for the highly selective fluorescence detection of cerium(iv). New J Chem 2020, 44, 9452-9455.
https://doi.org/10.1039/D0NJ01100B

[24]. Wang, Y.; Chang, H.-Q.; Wu, W.-N.; Mao, X.-J.; Zhao, X.-L.; Yang, Y.; Xu, Z.-Q.; Xu, Z.-H.; Jia, L. A highly sensitive and selective colorimetric and off-on fluorescent chemosensor for Cu2+ based on rhodamine 6G hydrazide bearing thiosemicarbazide moiety. J. Photochem. Photobiol. A Chem. 2017, 335, 10-16.
https://doi.org/10.1016/j.jphotochem.2016.11.003

[25]. Angupillai, S.; Hwang, J.-Y.; Lee, J.-Y.; Rao, B. A.; Son, Y.-A. Efficient rhodamine-thiosemicarbazide-based colorimetric/fluorescent 'turn-on' chemodosimeters for the detection of Hg2+ in aqueous samples. Sens. Actuators B Chem. 2015, 214, 101-110.
https://doi.org/10.1016/j.snb.2015.02.126

[26]. Salavati-Niasari, M. Host (nanocage of zeolite-Y)/guest (manganese(II), cobalt(II), nickel(II) and copper(II) complexes of 12-membered macrocyclic Schiff-base ligand derived from thiosemicarbazide and glyoxal) nanocomposite materials: Synthesis, characterization and catalytic oxidation of cyclohexene. J. Mol. Catal. A Chem. 2008, 283, 120-128.
https://doi.org/10.1016/j.molcata.2007.12.015

[27]. Pouramiri, B.; Tavakolinejad Kermani, E. Lanthanum(III) chloride/ chloroacetic acid as an efficient and reusable catalytic system for the synthesis of new 1-((2-hydroxynaphthalen-1-yl)(phenyl)methyl) semicarbazides/thiosemicarbazides. Arab. J. Chem. 2017, 10, S730-S734.
https://doi.org/10.1016/j.arabjc.2012.11.016

[28]. Maurya, M. R.; Sarkar, B.; Kumar, A.; Ribeiro, N.; Miliute, A.; Pessoa, J. C. New thiosemicarbazide and dithiocarbazate based oxido vanadium(iv) and dioxidovanadium(v) complexes. Reactivity and catalytic potential. New J Chem 2019, 43, 17620-17635.
https://doi.org/10.1039/C9NJ01486A

[29]. Refat, M. S.; El-Metwaly, N. M. Spectral, thermal and biological studies of Mn(II) and Cu(II) complexes with two thiosemicarbazide derivatives. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2012, 92, 336-346.
https://doi.org/10.1016/j.saa.2012.02.041

[30]. Zhao, Y.; Wang, Y.; Wu, Q.; Lin, J.; Wu, S.; Hou, W.; Wu, R.; Luo, G. New tricks for an old dog: Visible light-driven hydrogen production from water catalyzed by fac- and mer- geometrical isomers of tris(thiosemicarbazide) cobalt(III). Cuihua Xuebao/Chin. J. Catalysis 2018, 39, 517-526.
https://doi.org/10.1016/S1872-2067(17)62940-1

[31]. El-Gammal, O. A.; Fouda, A. E.-A. S.; Nabih, D. M. Novel Mn2+, Fe3+, Co2+, Ni2+ and Cu2+complexes of potential OS donor thiosemi carbazide: Design, structural elucidation, anticorrosion potential study and antibacterial activity. J. Mol. Struct. 2020, 1204, 127495.
https://doi.org/10.1016/j.molstruc.2019.127495

[32]. Singh, A.; Bharty, M. K.; Dani, R. K.; Singh, S.; Kushawaha, S. K.; Singh, N. K. Manganese(II) and zinc(II) complexes of 4-phenyl(2-methoxy benzoyl)-3-thiosemicarbazide: Synthesis, spectral, structural characterization, thermal behavior and DFT study. Polyhedron 2014, 73, 98-109.
https://doi.org/10.1016/j.poly.2014.02.029

[33]. Başaran, E.; Sıcak, Y.; Sogukomerogullari, H. G.; Karaküçük-Iyidoğan, A.; Oruç-Emre, E. E.; Sönmez, M.; Öztürk, M. Synthesis of novel chiral metal complexes derived from chiral thiosemicarbazide ligands as potential antioxidant agents. Chirality 2019, 31, 434-444.
https://doi.org/10.1002/chir.23069

[34]. Netalkar, P. P.; Netalkar, S. P.; Revankar, V. K. Transition metal complexes of thiosemicarbazone: Synthesis, structures and invitro antimicrobial studies. Polyhedron 2015, 100, 215-222.
https://doi.org/10.1016/j.poly.2015.07.075

[35]. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339-341.
https://doi.org/10.1107/S0021889808042726

[36]. Sheldrick, G. M. SHELXT - integrated space-group and crystal-structure determination. Acta Crystallogr. A Found. Adv. 2015, 71, 3-8.
https://doi.org/10.1107/S2053273314026370

[37]. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. C Struct. Chem. 2015, 71, 3-8.
https://doi.org/10.1107/S2053229614024218

[38]. Keypour, H.; Mahmoudabadi, M.; Shooshtari, A.; Bayat, M.; Soltani, E.; Karamian, R.; Farida, S. H. M. Synthesis, spectral, theoretical and antioxidant studies of copper (II) and cobalt (III) macroacyclic Schiff-base complexes containing homopiperazine moietiy. Chem. Data Coll. 2020, 26, 100354.
https://doi.org/10.1016/j.cdc.2020.100354

[39]. Joshi, R.; Kumari, A.; Singh, K.; Mishra, H.; Pokharia, S. Synthesis, structural characterization, electronic structure calculation, molecular docking study and biological activity of triorganotin(IV) complexes of schiff base (E)-4-amino-3-(2-(2-hydroxybenzylidene) hydrazinyl)-1H-1,2,4-triazole-5(4H)-thione). J. Mol. Struct. 2019, 1197, 519-534.
https://doi.org/10.1016/j.molstruc.2019.07.066

[40]. Laachir, A.; Rhoufal, F.; Guesmi, S.; Ketatni, E. M.; Jouffret, L.; Hlil, E. K.; Sergent, N.; Obbade, S.; Bentiss, F. Cobalt(II) coordination complex with 2,5-bis(pyridine-2-yl)-1,3,4-thiadiazole and thiocyanate as co-ligand: Synthesis, crystal structure, Hirshfeld surface analysis, spectroscopic, thermal and magnetic properties. J. Mol. Struct. 2020, 1208, 127892.
https://doi.org/10.1016/j.molstruc.2020.127892

[41]. Sarkar, B. N.; Bhar, K.; Kundu, S.; Fun, H.-K.; Ghosh, B. K. Synthesis, molecular and crystalline architectures, and properties of mononuclear cobalt(II) thiocyanates containing a symmetrical tailored diimine/an unsymmetrical bidentate Schiff base. J. Mol. Struct. 2009, 936, 104-111.
https://doi.org/10.1016/j.molstruc.2009.07.023

[42]. Hannachi, A.; Valkonen, A.; Gómez García, C. J.; Rzaigui, M.; Smirani, W. Synthesis of isomorphous cobalt and nickel thiocyanate coordination compounds: Effect of metals on compound properties. Polyhedron 2019, 173, 114122.
https://doi.org/10.1016/j.poly.2019.114122

[43]. Chandra, S.; Gupta, L. K.; Sangeetika Spectroscopic, cyclic voltammetric and biological studies of transition metal complexes with mixed nitrogen-sulphur (NS) donor macrocyclic ligand derived from thiosemicarbazide. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2005, 62, 453-460.
https://doi.org/10.1016/j.saa.2005.01.015

[44]. Banerjee, A.; Chattopadhyay, S. A benzoate bridged dinuclear mixed valence cobalt(III/II) complex with CoIIIO4CoII core: Synthesis, structure and investigation of its phenoxazinone synthase mimicking activity. Polyhedron 2020, 177, 114290.
https://doi.org/10.1016/j.poly.2019.114290

[45]. Mansour, A. M. Crystal structure, DFT, spectroscopic and biological activity evaluation of analgin complexes with Co(ii), Ni(ii) and Cu(ii). Dalton Trans. 2014, 43, 15950-15957.
https://doi.org/10.1039/C4DT02366H

[46]. Sadhu, M. H.; Solanki, A.; Kumar, S. B. Mixed ligand complexes of copper(II), cobalt(II), nickel(II) and zinc(II) with thiocyanate and pyrazole based tetradentate ligand: Syntheses, characterizations and structures. Polyhedron 2015, 100, 206-214.
https://doi.org/10.1016/j.poly.2015.07.067

[47]. Chandra, S.; Hooda, S.; Tomar, P. K.; Malik, A.; Kumar, A.; Malik, S.; Gautam, S. Synthesis and characterization of bis nitrato[4-hydroxyacetophenonesemicarbazone) nickel(II) complex as ionophore for thiocyanate-selective electrode. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 62, 18-27.
https://doi.org/10.1016/j.msec.2015.12.065

[48]. Gorczyński, A.; Zaranek, M.; Witomska, S.; Bocian, A.; Stefankiewicz, A. R.; Kubicki, M.; Patroniak, V.; Pawluć, P. The cobalt(II) complex of a new tridentate Schiff-base ligand as a catalyst for hydrosilylation of olefins. Catal. Commun. 2016, 78, 71-74.
https://doi.org/10.1016/j.catcom.2016.02.009

[49]. Zhao, R.-G.; Zhang, W.; Li, J.-K.; Zhang, L.-Y. (E)-2-Hydr-oxy-3-methoxy-benzaldehyde thio-semicarbazone. Acta Crystallogr. Sect. E Struct. Rep. Online 2008, 64, o1113.
https://doi.org/10.1107/S1600536808014475

[50]. Vrdoljak, V.; Dilović, I.; Rubcić, M.; Kraljević Pavelić, S.; Kralj, M.; Matković-Calogović, D.; Piantanida, I.; Novak, P.; Rozman, A.; Cindrić, M. Synthesis and characterisation of thiosemicarbazonato molybdenum(VI) complexes and their in vitro antitumor activity. Eur. J. Med. Chem. 2010, 45, 38-48.
https://doi.org/10.1016/j.ejmech.2009.09.021

[51]. Gizatullin, A.; Becker, J.; Islamov, D.; Serov, N.; Schindler, S.; Klimovitskii, A.; Shtyrlin, V. Synthesis and structure of a complex of copper(I) with l-cysteine and chloride ions containing Cu12S6 nanoclusters. Acta Crystallogr. E Crystallogr. Commun. 2021, 77, 324-330.
https://doi.org/10.1107/S2056989021002012

[52]. Orysyk, S. I.; Repich, G. G.; Bon, V. V.; Dyakonenko, V. V.; Orysyk, V. V.; Zborovskii, Y. L.; Shishkin, O. V.; Pekhnyo, V. I.; Vovk, M. V. Novel Fe(III), Co(III), Ni(II), Cu(II) coordination compounds involving 2-[(2-hydroxyphenyl)methylene]hydrazine-N-(2-propenyl)-carbothioamide as ligand: Synthesis, crystal structures and spectral characteristics. Inorganica Chim. Acta 2014, 423, 496-503.
https://doi.org/10.1016/j.ica.2014.08.056

[53]. Rusanova, J. A.; Kokozay, V. N.; Petrusenko, S.; Plyuta, N. Synthesis and crystal structure of a solvated CoIII complex with 2-hy-droxy-3-meth-oxy-benzaldehyde thio-semicarbazone ligands. Acta Crystallogr. E Crystallogr. Commun. 2021, 77, 1130-1134.
https://doi.org/10.1107/S2056989021010616

[54]. Kalinke, L. H. G.; Cardoso, J. C. O.; Rabelo, R.; Valdo, A. K.; Martins, F. T.; Cano, J.; Julve, M.; Lloret, F.; Cangussu, D. From paramagnetic to single‐molecule magnet behaviour in heterobimetallic compounds containing the tetrakis(thiocyanato‐ κN )cobaltate(II) anion: From paramagnetic to single-molecule magnet behaviour in hetero bimetallic compounds containing the tetrakis(thiocyanato-κN) cobaltate(II) anion. Eur. J. Inorg. Chem. 2018, 2018, 816-825.
https://doi.org/10.1002/ejic.201701177

[55]. Singh, Y. P.; Patel, R. N.; Singh, Y.; Choquesillo-Lazarte, D.; Butcher, R. J. Classical hydrogen bonding and stacking of chelate rings in new copper(ii) complexes. Dalton Trans. 2017, 46, 2803-2820.
https://doi.org/10.1039/C6DT04661D

[56]. Addison, A. W.; Rao, T. N.; Reedijk, J.; van Rijn, J.; Verschoor, G. C. Synthesis, structure, and spectroscopic properties of copper(II) compounds containing nitrogen-sulphur donor ligands; the crystal and molecular structure of aqua[1,7-bis(N-methylbenzimidazol-2′-yl)-2,6-dithiaheptane]copper(II) perchlorate. J. Chem. Soc., Dalton Trans. 1984, 1349-1356.
https://doi.org/10.1039/DT9840001349

[57]. Konno, T.; Tokuda, K.; Sakurai, J.; Okamoto, K.-I. Five-Coordinate Geometry of Cadmium(II) with Octahedral Bidentate-S,SComplex-Ligandcis(S)-[Co(aet)2(en)]+(aet=2-aminoethanethiolate): Synthesis, Crystal Structures and Interconversion of S-Bridged CoIIICdII Polynuclear Complexes. Bull. Chem. Soc. Jpn. 2000, 73, 2767-2773.
https://doi.org/10.1246/bcsj.73.2767

[58]. Das, S.; Bhar, K.; Chattopadhyay, S.; Mitra, P.; Smith, V. J.; Barbour, L. J.; Ghosh, B. K. Syntheses, structures and luminescence behaviours of Group 12 metal(II) thiocyanate complexes with a tetradentate Schiff base: Variation in molecular and crystalline architectures with the change of congeneric metal ions. Polyhedron 2012, 38, 26-35.
https://doi.org/10.1016/j.poly.2012.02.013

[59]. Roy, S.; Sarkar, B. N.; Bhar, K.; Satapathi, S.; Mitra, P.; Ghosh, B. K. Syntheses, structures and luminescence behaviors of zinc(II) complexes containing a tetradentate Schiff base: Variation in nuclearity and geometry with the change of halide/pseudohalide/ carboxylate and counter anion. J. Mol. Struct. 2013, 1037, 160-169.
https://doi.org/10.1016/j.molstruc.2012.12.018

[60]. Shaikh, I.; Vohra, A.; Devkar, R.; Jadeja, R. Synthesis, characterization, structural features and cytotoxicity of innovative zinc(II) complex derived from ONS-donor thio-Schiff base of acyl pyrazolone. Eur. J. Chem. 2019, 10, 131-138.
https://doi.org/10.5155/eurjchem.10.2.131-138.1858

[61]. Ibrahim, M. M.; Shaban, S. Y. Synthesis, characterization, and crystal structures of hydrotris(2-mercapto-1-imidazolyl)borate-based zinc (II) and copper(I) complexes. Inorganica Chim. Acta 2009, 362, 1471-1477.
https://doi.org/10.1016/j.ica.2008.07.004

[62]. Li, Y.-P.; Zang, H.; Sun, D.; Ming, J.; Su, G.-F. Crystal structure of bis2-[bis(2-hydroxyethyl)amino]ethanol-κ3O,N,O′zinc terephthalate. Acta Crystallogr. Sect. E Struct. Rep. Online 2014, 70, m361-m362.
https://doi.org/10.1107/S1600536814021771

Supporting Agencies

Most read articles by the same author(s)

Most read articles by the same author(s)

TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).