European Journal of Chemistry

Halide bridged organophosphorus complexes of HgX2 (X: I, Br and Cl): Synthesis, structure and theoretical studies

Crossmark


Main Article Content

Jahangir Mondal
Amit Kumar Manna
Goutam Kumar Patra

Abstract

Three organophosphorus mercury (II) coordination compounds [Hg2(µ-X)2X2(PPh3)2] {X: I (1), Br (2), and Cl (3)} have been synthesized by the reaction of mercury (II) halides with triphenylphosphine. The prepared complexes were characterized by spectroscopic techniques as well as by elemental analysis. The crystal structure of [Hg2(µ-I)2I2(PPh3)2] (1) was obtained by single-crystal X-ray diffraction study. Crystal data for [Hg2(µ-I)2I2(PPh3)2], C36H30Hg2I4P2: Monoclinic, space group P21/c (no. 14), a = 19.2115(13) Å, b = 11.1291(8) Å, c = 19.0599(14) Å, β = 90.461(2)°, = 4075.0(5) Å3, Z = 4, T = 293.15 K, μ (MoKα) = 10.657 mm-1, Dcalc = 2.336 g/cm3, 46095 reflections measured (4.23° ≤ 2Θ ≤ 49.994°), 7182 unique (Rint = 0.0563, Rsigma = 0.0365) which were used in all calculations. The final R1 was 0.0322 (I > 2σ(I)) and wR2 was 0.0780 (all data). The single crystal analysis of [Hg2(µ-I)2I2(PPh3)2] complex revealed that it has dimeric structure with bridged halides. [Hg2(µ-I)2I2(PPh3)2] complex has also a supramolecular arrangement through I···H-C interactions. The crystal packing and supramolecular features of these coordination compounds have also been studied using geometrical analysis, Hirshfeld surface analysis and DFT studies. Hirshfeld surface analysis indicated that H···H (49.3%), C···H (10.6%), and I···H (12.8%) interactions are the primary contributors to the intermolecular stabilization in the crystal. The equilibrium geometries of the studied complexes are investigated theoretically at the B3LYP/LANL2DZ level of theory. The calculated energy gap between HOMO-LUMO orbitals for complexes 1, 2, and 3 are in the trend of complex 3 > 2 > 1.


icon graph This Abstract was viewed 808 times | icon graph Article PDF downloaded 443 times icon graph Article CIF FILE downloaded 0 times

How to Cite
(1)
Mondal, J.; Manna, A. K.; Patra, G. K. Halide Bridged Organophosphorus Complexes of HgX2 (X: I, Br and Cl): Synthesis, Structure and Theoretical Studies. Eur. J. Chem. 2021, 12, 23-31.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Jennette, K. W. Environ. Health Perspec. 1981, 40, 233-252.
https://doi.org/10.1289/ehp.8140233

[2]. Dang, Y.; Meng, X.; Jiang, K.; Zhong, C.; Chen, X.; Qin, J. Dalton Trans. 2013, 42 (27), 9893-9897.
https://doi.org/10.1039/c3dt50291k

[3]. Tanaka, Y.; Kondo, J.; Sychrovsky, V.; Sebera, J.; Dairaku, T.; Saneyoshi, H.; Urata, H.; Torigoe, H.; Ono, A. Chem. Commun. 2015, 51 (98), 17343-17360.
https://doi.org/10.1039/C5CC02693H

[4]. Cotton, F. A.; Wilkinson, G.; Murillo, C. A.; Bochmann, M. Advanced Inorganic Chemistry, 6th edition, John Wiley & Sons, 1999.

[5]. Grdenic, D. Q. Rev., Chem. Soc. 1965, 19 (3), 303-328.
https://doi.org/10.1039/qr9651900303

[6]. Chillemi, G.; Mancini, G.; Sanna, N.; Barone, V.; Della Longa, S.; Benfatto, M.; Pavel, N. V.; D'Angelo, P. J. Am. Chem. Soc. 2007, 129 (17), 5430-5436.
https://doi.org/10.1021/ja066943z

[7]. Khavasi, H. R.; Tahrani, A. A. CrystEngComm 2013, 15 (29), 5799-5812.
https://doi.org/10.1039/c3ce40433a

[8]. Khavasi, H. R.; Azizpoor Fard, M. Cryst. Growth Des. 2010, 10 (4), 1892-1896.
https://doi.org/10.1021/cg100265d

[9]. Khavasi, H. R.; Mir Mohammad Sadegh, B. Dalton Trans. 2014, 43 (14), 5564-5573.
https://doi.org/10.1039/C3DT53220H

[10]. Guidara, S.; Feki, H.; Abid, Y. Spectrochim. Acta A 2013, 115, 437-444.
https://doi.org/10.1016/j.saa.2013.06.080

[11]. Elleuch, N.; Ben Ahmed, A.; Feki, H.; Abid, Y.; Minot, C. Spectrochim. Acta A 2014, 121, 129-138.
https://doi.org/10.1016/j.saa.2013.10.039

[12]. Guidara, S.; Ahmed, A. B.; Abid, Y.; Feki, H. Spectrochim. Acta A 2014, 127, 275-285.
https://doi.org/10.1016/j.saa.2014.02.028

[13]. Ahmed, A. B.; Elleuch, N.; Feki, H.; Abid, Y.; Minot, C. Spectrochim. Acta A 2011, 79 (3), 554-561.
https://doi.org/10.1016/j.saa.2011.03.033

[14]. Ahmed, A. B.; Feki, H.; Abid, Y.; Boughzala, H.; Minot, C. Spectrochim. Acta A 2010, 75 (1), 293-298.
https://doi.org/10.1016/j.saa.2009.10.026

[15]. Ahmed, A. B.; Feki, H.; Abid, Y.; Minot, C. Spectrochim. Acta A 2010, 75 (4), 1315-1320.
https://doi.org/10.1016/j.saa.2009.12.073

[16]. Ahmed, A. B.; Feki, H.; Abid, Y.; Boughzala, H.; Minot, C.; Mlayah, A. J. Mol. Struct. 2009, 920 (1-3), 1-7.
https://doi.org/10.1016/j.molstruc.2008.09.029

[17]. Ahmed, A. B.; Feki, H.; Abid, Y.; Boughzala, H.; Mlayah, A. J. Mol. Struct. 2008, 888 (1-3), 180-186.
https://doi.org/10.1016/j.molstruc.2007.11.056

[18]. Zyss, J. Molecular Nonlinear Optics Materials Physics and Devices, Academic Press, New York, 1994.

[19]. Jiang, M.; Fang, Q. Adv. Mater. 1999, 11 (13), 1147-1151.
https://doi.org/10.1002/(SICI)1521-4095(199909)11:13<1147::AID-ADMA1147>3.0.CO;2-H

[20]. Angeli Mary, P. A.; Dhanuskodi, S. Spectrochim. Acta A 2001, 57 (12), 2345-2353.
https://doi.org/10.1016/S1386-1425(01)00428-0

[21]. Rajendran, V.; Shyamala, D.; Loganayaki, M.; Ramasamy, P. Mater. Lett. 2007, 61 (16), 3477-3479.
https://doi.org/10.1016/j.matlet.2006.11.112

[22]. Jeyakumari, A. P.; Manivannan, S.; Dhanuskodi, S. Spectrochim. Acta A 2007, 67 (1), 83-86.
https://doi.org/10.1016/j.saa.2006.06.027

[23]. Dong, X.; Minhua, J.; Zhongke, T. Acta Chim. Sinica 1983, 41 (6), 570-573.

[24]. Mondal, J.; Mukherjee, A.; Patra, G. K. Inorg. Chim. Acta 2017, 463, 44-53.
https://doi.org/10.1016/j.ica.2017.03.031

[25]. Mondal, J.; Pal, P. K.; Mukherjee, A.; Patra, G. K. Inorg. Chim. Acta 2017, 466, 274-284.
https://doi.org/10.1016/j.ica.2017.06.025

[26]. De Proft, F.; Geerlings, P. Chem. Rev. 2001, 101 (5), 1451-1464.
https://doi.org/10.1021/cr9903205

[27]. Fitzgerald, G.; Andzelm, J. J. Phys. Chem. 1991, 95 (26), 10531-10534.
https://doi.org/10.1021/j100179a003

[28]. Tanak, H. Int. J. Quantum Chem. 2011, 112 (11), 2392-2402.
https://doi.org/10.1002/qua.23206

[29]. Hyde, S.; Ninham, B. W.; Andersson, S.; Larsson, K.; Landh, T.; Blum, Z.; Lidin, S. The Mathematics of Curvature. In the Language of Shape; Elsevier, 1997; pp 1-42.
https://doi.org/10.1016/B978-044481538-5/50002-2

[30]. Spackman, M. A.; McKinnon, J. J. CrystEngComm 2002, 4 (66), 378-392.
https://doi.org/10.1039/B203191B

[31]. McKinnon, J. J.; Fabbiani, F. P. A.; Spackman, M. A. Cryst. Growth Des. 2007, 7 (4), 755-769.
https://doi.org/10.1021/cg060773k

[32]. Moggach, S. A.; Parsons, S.; Wood, P. A. Crystallogr. Rev. 2008, 14 (2), 143-184.
https://doi.org/10.1080/08893110802037945

[33]. Parkin, A.; Barr, G.; Dong, W.; Gilmore, C. J.; Jayatilaka, D.; McKinnon, J. J.; Spackman, M. A.; Wilson, C. C. CrystEngComm 2007, 9 (8), 648-652.
https://doi.org/10.1039/b704177b

[34]. Barr, G.; Dong, W.; Gilmore, C. J.; Parkin, A.; Wilson, C. C. J. Appl. Cryst. 2005, 38 (5), 833-841.
https://doi.org/10.1107/S0021889805021308

[35]. Dadrass, A.; Rahchamani, H. J. Chil. Chem. Soc. 2016, 61 (2), 2968-2972.
https://doi.org/10.4067/S0717-97072016000200023

[36]. Bruker. SAINT, SMART. Bruker AXS Inc., Madison, Wisconsin, USA, 2004.

[37]. Sheldrick, G. M. Acta Cryst. Sect. A 2007, 64 (1), 112-122.
https://doi.org/10.1107/S0108767307043930

[38]. Farrugia, L. J. J. Appl. Cryst. 1999, 32 (4), 837-838.
https://doi.org/10.1107/S0021889899006020

[39]. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheese-Man, J. R.; Montgomery Jr. , J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G.; Salvador, A. P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Ste-fanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; John-son, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A.; Gaussian 09W, Revision D.01, Wallingford, CT, 2009.

[40]. GaussView, Version 5, Dennington, R.; Keith, T.; Millam, J.; Eppinnett, K.; Hovell, W. L.; Gilliland, R. Semichem, Inc., Shawnee Mission, KS, 2009.

[41]. Norret, M.; Makha, M.; Sobolev, A. N.; Raston, C. L. New J. Chem. 2008, 32 (5), 808-812.
https://doi.org/10.1039/b718937k

[42]. Meng, X. X. Applications of Hirshfeld surfaces to ionic and mineral crystals, Ph.D. Thesis, University of New England, 2004.

[43]. Pendas, A. M.; Luana, V.; Pueyo, L.; Francisco, E.; Mori-Sanchez, P. J. Chem. Phys. 2002, 117 (3), 1017-1023.
https://doi.org/10.1063/1.1483851

[44]. Desiraju, G. R. Angew. Chem. Int. Ed. 2007, 46 (44), 8342-8356.
https://doi.org/10.1002/anie.200700534

[45]. CrystalExplorer (Version 3.1), Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D., Spackman, M. A., University of Western Australia, 2012.

[46]. Sebastian, S.; Sundaraganesan, N. Spectrochim. Acta A 2010, 75 (3), 941-952.
https://doi.org/10.1016/j.saa.2009.11.030

[47]. Luque, F. J.; Lopez, J. M.; Orozco, M. Theor. Chimica. Acta 2000, 103 (3-4), 343-345.
https://doi.org/10.1007/s002149900013

[48]. Huheey, J. E., Inorganic Chemistry-Principles of Structure and Reactivity, 2nd Edition, Harper Int. Ed., New York, 1978.

[49]. Radovic, L. R.; Bockrath, B. J. Am. Chem. Soc. 2005, 127 (16), 5917-5927.
https://doi.org/10.1021/ja050124h

[50]. Thanikaivelan, P.; Subramanian, V.; Raghava Rao, J.; Unni Nair, B. Chem. Phys. Lett. 2000, 323 (1-2), 59-70.
https://doi.org/10.1016/S0009-2614(00)00488-7

Supporting Agencies

Department of Science and Technology (File Nos. SR/FST/CSI-264/2014 and EMR/2017/0001789), Government of India, New Delhi, India..
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).