European Journal of Chemistry

Synthesis, crystal structure, DFT studies, and Hirshfeld surface analysis of 2,2'-(((methylene-bis(4,1-phenylene))bis(azanylylidene))bis(methanylylidene))diphenol

Crossmark


Main Article Content

Goutam Kumar Patra
Dinesh De

Abstract

The synthesis, characterization, and theoretical studies of the title compound has been reported in this study. The molecular structure has been characterized by room-temperature single-crystal X-ray diffraction study which reveals that it has an angular shape with intramolecular and intermolecular hydrogen bonding. Crystal data for the title compound, C27H22N2O2 (=406.46 g/mol): monoclinic, space group C2/c (no. 15), a = 36.371(10) Å, b = 4.6031(12) Å, c = 12.192(3) Å, β = 94.972(6)°, = 2033.5(9) Å3, Z = 4, T = 100 K, μ(MoKα) = 0.084 mm-1, Dcalc = 1.328 g/cm3, 8812 reflections measured (2.248° ≤ 2Θ ≤ 49.734°), 1773 unique (Rint = 0.0323, Rsigma = 0.0239) which were used in all calculations. The final R1 was 0.0411 (I > 2σ(I)) and wR2 was 0.1165 (all data). In crystal structure, the molecule exits in the enol form and is located on a two-fold axis of symmetry; where the central methylene carbon atom of the diphenylmethane moiety is displaced from the aromatic ring planes. The Hirshfeld surface analysis of the title compound shows that H···H, C···H, and O···H interactions of 53.3, 13.2, and 5.4%; respectively, which exposed that the main intermolecular interactions were H···H intermolecular interactions. The HOMO-LUMO energy gap in the title compound is 2.9639 eV. Molecular electrostatic potential of the investigated compound has also been studied.


icon graph This Abstract was viewed 758 times | icon graph Article PDF downloaded 209 times icon graph Article CIF FILE downloaded 0 times

How to Cite
(1)
Patra, G. K.; De, D. Synthesis, Crystal Structure, DFT Studies, and Hirshfeld Surface Analysis of 2,2’-(methylene-bis(4,1-phenylene) bis(azanylylidene) bis(methanylylidene) diphenol. Eur. J. Chem. 2022, 13, 49-55.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Dey, S.; Sen, C.; Sinha, C. Chromogenic Hydrazide Schiff Base Reagent: Spectrophotometric Determination of CN- Ion. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 225 (117471), 117471.
https://doi.org/10.1016/j.saa.2019.117471

[2]. Sztanke, K.; Maziarka, A.; Osinka, A.; Sztanke, M. An Insight into Synthetic Schiff Bases Revealing Antiproliferative Activities in Vitro. Bioorg. Med. Chem. 2013, 21 (13), 3648-3666.
https://doi.org/10.1016/j.bmc.2013.04.037

[3]. Chandra, R.; Manna, A. K.; Sahu, M.; Rout, K.; Patra, G. K. Simple Salicylaldimine-Functionalized Dipodal Bis Schiff Base Chromogenic and Fluorogenic Chemosensors for Selective and Sensitive Detection of Al3+ and Cr3+. Inorganica Chim. Acta 2020, 499 (119192), 119192.
https://doi.org/10.1016/j.ica.2019.119192

[4]. Gupta, K. C.; Sutar, A. K. Catalytic Activities of Schiff Base Transition Metal Complexes. Coord. Chem. Rev. 2008, 252 (12-14), 1420-1450.
https://doi.org/10.1016/j.ccr.2007.09.005

[5]. Burrows, C. J.; Muller, J. G.; Poulter, G. T.; Rokita, S. E. Nickel-Catalyzed Oxidations: From Hydrocarbons to DNA. Acta Chem. Scand. 1996, 50 (4), 337-344.
https://doi.org/10.3891/acta.chem.scand.50-0337

[6]. Pang, Y.; Cui, S.; Li, B.; Zhang, J.; Wang, Y.; Zhang, H. Metal-Dependent Assembly of a Helical-[Co3L3] Cluster versus a Meso-[Cu2L2] Cluster with O,N,N',O'-Schiff Base Ligand: Structures and Magnetic Properties. Inorg. Chem. 2008, 47 (22), 10317-10324.
https://doi.org/10.1021/ic800856m

[7]. Fouda, M. F. R.; Abd-Elzaher, M. M.; Shakdofa, M. M.; El-Saied, F. A.; Ayad, M. I.; El Tabl, A. S. Synthesis and Characterization of a Hydrazone Ligand Containing Antipyrine and Its Transition Metal Complexes. J. Coord. Chem. 2008, 61 (12), 1983-1996.
https://doi.org/10.1080/00958970701795714

[8]. Boal, A. K.; Rosenzweig, A. C. Structural Biology of Copper Trafficking. Chem. Rev. 2009, 109 (10), 4760-4779.
https://doi.org/10.1021/cr900104z

[9]. Salah, B. A.; Kandil, A. T.; Abd El-Nasser, M. G. Synthesis, Characterization, Computational and Biological Activity of Novel Hydrazone Complexes. J. Radiat. Res. Appl. Sci. 2019, 12 (1), 383-392.
https://doi.org/10.1080/16878507.2019.1678100

[10]. Kruger, P. E.; Martin, N.; Nieuwenhuyzen, M. Dinuclear Double Helicates with a Twist: Synthesis, Structure and Supramolecular Entanglement in [M2L2] Metallo-Helices {M = Co(II), Cu(II), H2L = Bis(N-Salicylidene-4,4′-Diaminodiphenyl)Methane}. J. Chem. Soc. 2001, No. 13, 1966-1970.
https://doi.org/10.1039/b102028p

[11]. Ogawa, K.; Harada, J. Aggregation Controlled Proton Tautomerization in Salicylideneanilines. J. Mol. Struct. 2003, 647 (1-3), 211-216.
https://doi.org/10.1016/S0022-2860(02)00526-4

[12]. Vitale, M. Luminescent Mixed Ligand Copper(I) Clusters (CuI)n(L)m (L=pyridine, Piperidine): Thermodynamic Control of Molecular and Supramolecular Species. Coord. Chem. Rev. 2001, 219-221, 3-16.
https://doi.org/10.1016/S0010-8545(00)00414-8

[13]. Constable, E. C.; Ward, M. D.; Tocher, D. A. Molecular Helicity in Inorganic Complexes; Bi- and Tri-Nuclear Complexes of 2,2′:6′,2″:6″, 2″′:6″′,2″″:6″″,2″″′-Sexipyridine and the Crystal and Molecular Structure of Bis(µ-2,2′:6′,2″:6″,2″′:6″′,2″″:6″″,2″″′-Sexipyridine-Κ3N, N′,N″:Κ3N″′,N″″,N″″′) Dicadmium Hexafluorophosphate-Acetonitrile (1/4). J. Chem. Soc., Dalton Trans. 1991, No. 7, 1675-1683.
https://doi.org/10.1039/DT9910001675

[14]. Filarowski, A.; Koll, A.; Głowiak, T. Proton Transfer Equilibrium in the Intramolecular Hydrogen Bridge in Sterically Hindered Schiff Bases. J. Mol. Struct. 2002, 615 (1-3), 97-108.
https://doi.org/10.1016/S0022-2860(02)00211-9

[15]. Popović, Z.; Pavlović, G.; Matković-Čalogović, D.; Roje, V.; Leban, I. On Tautomerism of Two 5-Methoxysalicylaldimine Structural Isomers in the Solid State: Structural Study of N-(o-Hydroxyphenyl)-5-Methoxy salicylaldimine and N-(m-Hydroxyphenyl)-5-Methoxysalicylaldimine. J. Mol. Struct. 2002, 615 (1-3), 23-31.
https://doi.org/10.1016/S0022-2860(02)00203-X

[16]. Liu, A.; Yang, L.; Zhang, Z.; Zhang, Z.; Xu, D. A Novel Rhodamine-Based Colorimetric and Fluorescent Sensor for the Dual-Channel Detection of Cu2+ and Fe3+ in Aqueous Solutions. Dyes Pigm. 2013, 99 (2), 472-479.
https://doi.org/10.1016/j.dyepig.2013.06.007

[17]. Ghorai, A.; Mondal, J.; Chowdhury, S.; Patra, G. K. Solvent-Dependent Fluorescent-Colorimetric Probe for Dual Monitoring of Al3+ and Cu2+ in Aqueous Solution: An Application to Bio-Imaging. Dalton Trans. 2016, 45 (28), 11540-11553.
https://doi.org/10.1039/C6DT01795A

[18]. Mao, J.; Wang, L.; Dou, W.; Tang, X.; Yan, Y.; Liu, W. Tuning the Selectivity of Two Chemosensors to Fe(III) and Cr(III). Org. Lett. 2007, 9 (22), 4567-4570.
https://doi.org/10.1021/ol7020687

[19]. Yoshida, N.; Ichikawa, K. Synthesis and Structure of a Dinuclear Zinc(Ii) Triple Helix of an N,N-Bis-Bidentate Schiff Base: New Building Blocks for the Construction of Helical Structures. Chem. Commun. (Camb.) 1997, No. 12, 1091-1092.
https://doi.org/10.1039/a701669g

[20]. Rout, K.; Manna, A. K.; Sahu, M.; Mondal, J.; Singh, S. K.; Patra, G. K. Triazole-Based Novel Bis Schiff Base Colorimetric and Fluorescent Turn-on Dual Chemosensor for Cu2+ and Pb2+: Application to Living Cell Imaging and Molecular Logic Gates. RSC Adv. 2019, 9 (44), 25919-25931.
https://doi.org/10.1039/C9RA03341F

[21]. Manna, A. K.; Rout, K.; Chowdhury, S.; Patra, G. K. A Dual-Mode Highly Selective and Sensitive Schiff Base Chemosensor for Fluorescent Colorimetric Detection of Ni2+ and Colorimetric Detection of Cu2. Photochem. Photobiol. Sci. 2019, 18 (6), 1512-1525.
https://doi.org/10.1039/C9PP00114J

[22]. Sahu, M.; Kumar Manna, A.; Rout, K.; Mondal, J.; Patra, G. K. A Highly Selective Thiosemicarbazone Based Schiff Base Chemosensor for Colorimetric Detection of Cu2+ and Ag+ Ions and Turn-on Fluorometric Detection of Ag+ Ions. Inorganica Chim. Acta 2020, 508 (119633), 119633.
https://doi.org/10.1016/j.ica.2020.119633

[23]. Mishra, J.; Kaur, H.; Ganguli, A. K.; Kaur, N. Fluorescent Chemosensor Based on Urea/Thiourea Moiety for Sensing of Hg(II) Ions in an Aqueous Medium with High Sensitivity and Selectivity: A Comparative Account on Effect of Molecular Architecture on Chemosensing. J. Mol. Struct. 2018, 1161, 34-43.
https://doi.org/10.1016/j.molstruc.2018.01.004

[24]. Rana, S.; Mittal, S. K.; Singh, N.; Singh, J.; Banks, C. E. Schiff Base Modified Screen Printed Electrode for Selective Determination of Aluminium(III) at Trace Level. Sens. Actuators B Chem. 2017, 239, 17-27.
https://doi.org/10.1016/j.snb.2016.07.133

[25]. Yoshida, N.; Ichikawa, K.; Shiro, M. Supramolecular Motifs in Metal Complexes of Schiff Bases. Part 5. Zinc(II)-Assisted Self-Assembly of Some Bis-N,N- and N,O-Bidentate Schiff Bases and Chiral Packing Modes in Solid State. J. Chem. Soc., Perkin Trans. 2 2000, No. 1, 17-26.
https://doi.org/10.1039/a908041d

[26]. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42 (2), 339-341.
https://doi.org/10.1107/S0021889808042726

[27]. Sheldrick, G. M. A Short History of SHELX. Acta Crystallogr. A 2008, 64 (1), 112-122.
https://doi.org/10.1107/S0108767307043930

[28]. Sheldrick, G. M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. C Struct. Chem. 2015, 71 (Pt 1), 3-8.
https://doi.org/10.1107/S2053229614024218

[29]. Frisch, M. J.; Trucks G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; A. J. Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc. , Gaussian 09, Revision A. 02, Wallingford CT, 2009.

[30]. Dennington, R.; Keith, T.; Millam, J.; Gaussview. Version 5; Semichem Inc: Shawnee Mission, KS, 2009.

[31]. Norret, M.; Makha, M.; Sobolev, A. N.; Raston, C. L. Controlling the Confinement of Fullerene C60 Molecules Using a Saddle Shape Ni(Ii) Macrocycle. New J Chem 2008, 32 (5), 808-812.
https://doi.org/10.1039/b718937k

[32]. Spackman, M. A.; McKinnon, J. J. Fingerprinting Intermolecular Interactions in Molecular Crystals. CrystEngComm 2002, 4 (66), 378-392.
https://doi.org/10.1039/B203191B

[33]. Meng, X. X. Applications of Hirshfeld surfaces to ionic and mineral crystals, Ph.D. Thesis, University of New England, 2004.

[34]. Pendás, A. M.; Luaña, V.; Pueyo, L.; Francisco, E.; Mori-Sánchez, P. Hirshfeld Surfaces as Approximations to Interatomic Surfaces. J. Chem. Phys. 2002, 117 (3), 1017-1023.
https://doi.org/10.1063/1.1483851

[35]. Hyde, S.; Ninham, B. W.; Andersson, S.; Larsson, K.; Landh, T.; Blum, Z.; Lidin, S. In The Language of Shape; Elsevier, 1997.

[36]. Nishikawa, M.; Nomoto, K.; Kume, S.; Inoue, K.; Sakai, M.; Fujii, M.; Nishihara, H. Dual Emission Caused by Ring Inversion Isomerization of a 4-Methyl-2-Pyridyl-Pyrimidine Copper(I) Complex. J. Am. Chem. Soc. 2010, 132 (28), 9579-9581.
https://doi.org/10.1021/ja103718e

[37]. Desiraju, G. R. Crystal Engineering: A Holistic View. Angew. Chem. Int. Ed Engl. 2007, 46 (44), 8342-8356.
https://doi.org/10.1002/anie.200700534

[38]. Spackman, P. R.; Turner, M. J.; McKinnon, J. J.; Wolff, S. K.; Grimwood, D. J.; Jayatilaka, D.; Spackman, M. A. CrystalExplorer: A Program for Hirshfeld Surface Analysis, Visualization and Quantitative Analysis of Molecular Crystals. J. Appl. Crystallogr. 2021, 54 (Pt 3), 1006-1011.
https://doi.org/10.1107/S1600576721002910

[39]. Sebastian, S.; Sundaraganesan, N. The Spectroscopic (FT-IR, FT-IR Gas Phase, FT-Raman and UV) and NBO Analysis of 4-Hydroxypiperidine by Density Functional Method. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2010, 75 (3), 941-952.
https://doi.org/10.1016/j.saa.2009.11.030

[40]. Luque, F. J.; López, J. M.; Orozco, M. Perspective on "Electrostatic Interactions of a Solute with a Continuum. A Direct Utilization of Ab Initio Molecular Potentials for the Prevision of Solvent Effects." Theor. Chem. Acc. 2000, 103 (3-4), 343-345.
https://doi.org/10.1007/s002149900013

Supporting Agencies

The Department of Science and Technology (SR/FST/CSI-264/2014 and EMR/2017/0001789) and Department of Biotechnology, Government of India, New Delhi.
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).