European Journal of Chemistry

Synthesis, crystal structure, DFT studies, and Hirshfeld surface analysis of N,N'-bis(3-quinolyl-methylene)diphenylethanedione dihydrazone

Crossmark


Main Article Content

Goutam Kumar Patra
Amit Kumar Manna
Dinesh De

Abstract

The synthesis, characterization, and theoretical studies of a novel hydrazine, N,N’-bis-(3-quinolylmethylene)diphenylethanedione dihydrazone (1) has been reported. The molecular structure has been characterized by room-temperature single-crystal X-ray diffraction which reveals that two quinoline moieties are disposed nearly perpendicularly around the central C-C bond giving a ‘L’ shape of the molecule. This particular geometry gives rise to the hydrogen-bonded supramolecular rectangle of two self-complementary molecules. These supramolecular units are further assembled by π-π interaction. The Hirshfeld surface analysis of compound 1 shows that C···C, C···H, H···H, and N···H interactions of 13.1, 9.9, 52.3, and 7.4%, respectively, which exposed that the main intermolecular interactions were H···H intermolecular interactions. Crystal data for C34H24N6: Triclinic, space group P-1 (no. 2), a = 10.885(3) Å, b = 11.134(3) Å, c = 12.870(3) Å, α = 90.122(6)°, β = 114.141(6)°, γ = 110.277(5)°, = 1316.1(6) Å3, Z = 2, T = 100(2) K, μ(MoKα) = 0.080 mm-1, Dcalc = 1.304 g/cm3, 7309 reflections measured (3.518° ≤ 2Θ ≤ 39.276°), 2318 unique (Rint = 0.0527, Rsigma = 0.0565) which were used in all calculations. The final R1 was 0.0416 (I > 2σ(I)) and wR2 was 0.1074 (all data).


icon graph This Abstract was viewed 660 times | icon graph Article PDF downloaded 342 times icon graph Article CIF FILE downloaded 0 times

How to Cite
(1)
Patra, G. K.; Manna, A. K.; De, D. Synthesis, Crystal Structure, DFT Studies, and Hirshfeld Surface Analysis of N,N’-bis(3-Quinolyl-methylene)diphenylethanedione Dihydrazone. Eur. J. Chem. 2021, 12, 394-400.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Janiak, C.; Scharmann, T. G. Polyhedron 2003, 22 (8), 1123-1133.
https://doi.org/10.1016/S0277-5387(03)00098-6

[2]. Janiak, C. Dalton Trans. 2003, 14, 2781-2804.
https://doi.org/10.1039/b305705b

[3]. Rout, K.; Manna, A. K.; Sahu, M.; Mondal, J.; Singh, S. K.; Patra, G. K. RSC Adv. 2019, 9 (44), 25919-25931.
https://doi.org/10.1039/C9RA03341F

[4]. Pal, S.; Pal, S. Polyhedron 2003, 22 (6), 867-873.
https://doi.org/10.1016/S0277-5387(03)00008-1

[5]. Patra, G. K.; Pal, P. K.; Mondal, J.; Ghorai, A.; Mukherjee, A.; Saha, R.; Fun, H.-K. Inorganica Chim. Acta 2016, 447, 77-86.
https://doi.org/10.1016/j.ica.2016.03.032

[6]. Mondal, J.; Mukherjee, A.; Patra, G. K. Inorganica Chim. Acta 2017, 463, 44-53.
https://doi.org/10.1016/j.ica.2017.03.031

[7]. Manna, A. K.; Mondal, J.; Chandra, R.; Rout, K.; Patra, G. K. J. Photochem. Photobiol. A Chem. 2018, 356, 477-488.
https://doi.org/10.1016/j.jphotochem.2018.01.017

[8]. Lehn, J.-M. Angew. Chem. Int. Ed. Engl. 1988, 27 (1), 89-112.
https://doi.org/10.1002/anie.198800891

[9]. Subramanian, S.; Zaworotko, M. J. Coord. Chem. Rev. 1994, 137, 357-401.
https://doi.org/10.1016/0010-8545(94)03008-E

[10]. Biradha, K.; Fujita, M. Angew. Chem. Int. Ed Engl. 2002, 41 (18), 3392-3395.
https://doi.org/10.1002/1521-3773(20020916)41:18<3392::AID-ANIE3392>3.0.CO;2-V

[11]. Braga, D.; Bazzi, C.; Maini, L.; Grepioni, F. CrystEngComm 1999, 1 (5), 15-20.
https://doi.org/10.1039/a907565h

[12]. Desiraju, G. R. The Supramolecular Synthon in Crystal Engineering. In Stimulating Concepts in Chemistry; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, FRG, 2005; pp 293-306.
https://doi.org/10.1002/3527605746.ch19

[13]. Fernandes, J. D.; Maximino M. D.; Braunger, M. L.; Pereira, M. S.; Olivati, C. A.; Constantino, C. J. L.; Alessio, P. Phys. Chem. Chem. Phys. 2020, 22, 13554-13562.
https://doi.org/10.1039/D0CP01293A

[14]. Zaworotko, M. J. Angew. Chem. Int. Ed Engl. 2000, 39 (17), 3052-3054.
https://doi.org/10.1002/1521-3773(20000901)39:17<3052::AID-ANIE3052>3.0.CO;2-8

[15]. Baratta, W.; Ballico, M.; Baldino, S.; Chelucci, G.; Herdtweck, E.; Siega, K.; Magnolia, S.; Rigo, P. Chemistry 2008, 14 (30), 9148-9160.
https://doi.org/10.1002/chem.200800888

[16]. Létard, J.-F.; Guionneau, P.; Rabardel, L.; Howard, J. A. K.; Goeta, A. E.; Chasseau, D.; Kahn, O. Inorg. Chem. 1998, 37 (17), 4432-4441.
https://doi.org/10.1021/ic980107b

[17]. Arun, V.; Robinson, P. P.; Manju, S.; Leeju, P.; Varsha, G.; Digna, V.; Yusuff, K. K. M. Dyes Pigm. 2009, 82 (3), 268-275.
https://doi.org/10.1016/j.dyepig.2009.01.010

[18]. Machura, B.; Kruszynski, R. Polyhedron 2007, 26 (14), 3686-3694.
https://doi.org/10.1016/j.poly.2007.03.058

[19]. Maspoch, D.; Ruiz-Molina, D.; Veciana, J. J. Mater. Chem. 2004, 14 (18), 2713-2723.
https://doi.org/10.1039/b407169g

[20]. Rajendran, V.; Shyamala, D.; Loganayaki, M.; Ramasamy, P. Mater. Lett. 2007, 61 (16), 3477-3479.
https://doi.org/10.1016/j.matlet.2006.11.112

[21]. Jeyakumari, A. P.; Manivannan, S.; Dhanuskodi, S. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2007, 67 (1), 83-86.
https://doi.org/10.1016/j.saa.2006.06.027

[22]. De Proft, F.; Geerlings, P. Chem. Rev. 2001, 101 (5), 1451-1464.
https://doi.org/10.1021/cr9903205

[23]. Tanak, H. Int. J. Quantum Chem. 2012, 112 (11), 2392-2402.
https://doi.org/10.1002/qua.23206

[24]. Moggach, S. A.; Parsons, S.; Wood, P. A. Crystallogr. Rev. 2008, 14 (2), 143-184.
https://doi.org/10.1080/08893110802037945

[25]. Parkin, A.; Barr, G.; Dong, W.; Gilmore, C. J.; Jayatilaka, D.; McKinnon, J. J.; Spackman, M. A.; Wilson, C. C. CrystEngComm 2007, 9 (8), 648-652.
https://doi.org/10.1039/b704177b

[26]. Boehr, D. D.; Farley, A. R.; Wright, G. D.; Cox, J. R. Chem. Biol. 2002, 9 (11), 1209-1217.
https://doi.org/10.1016/S1074-5521(02)00245-4

[27]. Bruker (2008). SAINT, SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

[28]. Sheldrick, G. M. Acta Crystallogr. A 2008, 64 (Pt 1), 112-122.
https://doi.org/10.1107/S0108767307043930

[29]. Farrugia, L. J. J. Appl. Cryst. 2012, 45, 849-854.
https://doi.org/10.1107/S0021889812029111

[30]. Frisch, M. J.; Trucks G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; A. J. Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Gaussian 09, Revision A. 02, Wallingford CT, 2009.

[31]. Norret, M.; Makha, M.; Sobolev, A. N.; Raston, C. L. New J. Chem. 2008, 32 (5), 808-812.
https://doi.org/10.1039/b718937k

[32]. Meng, X. X. Applications of Hirshfeld surfaces to ionic and mineral crystals, Ph.D. Thesis, University of New England, 2004.

[33]. Pendas, A. M.; Luaña, V.; Pueyo, L.; Francisco, E.; Mori-Sanchez, P. J. Chem. Phys. 2002, 117 (3), 1017-1023.
https://doi.org/10.1063/1.1483851

[34]. Desiraju, G. R. Angew. Chem. Int. Ed Engl. 2007, 46 (44), 8342-8356.
https://doi.org/10.1002/anie.200700534

[35]. Schmidt, G. M. J. Pure Appl. Chem. 1971, 27 (4), 647-678.
https://doi.org/10.1351/pac197127040647

[36]. Wolff, S. K.; Grimwood, D. J.; McKinnon, J. J.; Turner, M. J.; Jayatilaka, D.; Spackman, M. A. CrystalExplorer (Version 3.1); University of Western Australia, 2012.

[37]. Patra, G. K.; Goldberg, I. Cryst. Growth Des. 2003, 3 (3), 321-329.
https://doi.org/10.1021/cg034011q

[38]. Busch, D. H.; Bailar, J. C., Jr. J. Am. Chem. Soc. 1956, 78 (6), 1137-1142.
https://doi.org/10.1021/ja01587a014

Supporting Agencies

Department of Science and Technology (SR/FST/CSI-264/2014 and EMR/ 2017/0001789) and Department of Biotechnology, Government of India, New Delhi, India.
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).