European Journal of Chemistry 2022, 13(4), 468-477 | doi: https://doi.org/10.5155/eurjchem.13.4.468-477.2349 | Get rights and content

Issue cover




Crossmark

  Open Access OPEN ACCESS | Open Access PEER-REVIEWED | RESEARCH ARTICLE | DOWNLOAD PDF | VIEW FULL-TEXT PDF | TOTAL VIEWS

The crystal magnification, characterization, X-ray single crystal structure, thermal behavior, and computational studies of the 2,4,6-trimethylpyridinium picrate


Nahide Burcu Arslan (1) orcid , Fatma Aydin (2,*) orcid

(1) Department of Computer Education and Instructional Technology, Faculty of Education, Giresun University, 28200, Giresun, Turkey
(2) Department of Chemistry, Faculty of Arts and Sciences, Canakkale Onsekiz Mart University, 17100, Canakkale, Turkey
(*) Corresponding Author

Received: 23 Sep 2022 | Revised: 06 Oct 2022 | Accepted: 24 Oct 2022 | Published: 31 Dec 2022 | Issue Date: December 2022

Abstract


A crystal of organic salt, 2,4,6-trimethylpyridinium picrate (TMPPc), was synthesized and magnified by slow evaporation in a polar aprotic solvent and characterized by 1H NMR, 13C NMR, and FT-IR spectroscopic methods. X-ray diffraction analysis of the crystal structure of the compound TMPPc showed the presence of a monoclinic space group with a = 4.0174(4) Å, b = 27.863(3) Å, c = 13.9247(17) Å, β = 95.741(4)°, = 1550.9(3) Å3, Z = 4, T = 296 K, μ(MoKα) = 0.123 mm-1, Dcalc = 1.500 g/cm3, 62749 reflections measured (5.88° ≤ 2Θ ≤ 57.058°), 3911 unique (Rint = 0.0536, Rsigma = 0.0226) which were used in all calculations. The final R1 was 0.0569 (I > 2σ(I)) and wR2 was 0.1710 (all data). Detailed investigation of molecular packing of the TMPPc molecule indicated the presence of intermolecular hydrogen bond between N4-H44···O1 and C13-H13B···O4 that generates C22(14) chain running parallel to the [001] direction. The infrared and Raman spectra of the prepared TMPPc compound were recorded and discussed. The thermal stability of the obtained TMPPc crystal was analysed by TGA/DTG technique and revealed that the crystal was stable up to 162 °C. Density functional theory calculations such as the value of the HOMO and LUMO energy gap, the parameters of the molecular electrostatic potential, the global reactivity and thermodynamic properties of the compound TMPPc were also performed using the DFT/B3LYP method with the level of the 6-311G (d, p) basis set.


Keywords


Picric acid; 2,4,6-Collidine; Thermal properties; X-ray structure determination; Molecular electrostatic potential; 2,4,6-Trimethylpyridinium picrate

Full Text:

PDF
PDF    Open Access

DOI: 10.5155/eurjchem.13.4.468-477.2349

Links for Article


| | | | | | |

| | | | | | |

| | | |

Related Articles




Article Metrics

icon graph This Abstract was viewed 80 times | icon graph PDF Article downloaded 18 times

Funding information


The Scientific Research Coordination Unit of Canakkale Onsekiz Mart University (Project no: FYL-2016-672), Canakkale, Turkey.

References


[1]. Sherman, A. R. 2,4,6-Collidine. Encyclopedia of Reagents for Organic Synthesis 2001.
https://doi.org/10.1002/047084289X.rc190

[2]. Herzog, A.; Roesky, H. W.; Jäger, F.; Steiner, A. 2,4,6-Trimethyl-pyridine-bishydrofluoride: a novel fluorinating reagent for organo transition-metal alkyls. Chem. Commun. (Camb.) 1996, 29-30.
https://doi.org/10.1039/CC9960000029

[3]. Xue, X.-S.; Wang, Y.; Li, M.; Cheng, J.-P. Comprehensive energetic scale for quantitatively estimating the fluorinating potential of N-F reagents in electrophilic fluorinations. J. Org. Chem. 2016, 81, 4280-4289.
https://doi.org/10.1021/acs.joc.6b00683

[4]. Rozatian, N.; Ashworth, I. W.; Sandford, G.; Hodgson, D. R. W. A quantitative reactivity scale for electrophilic fluorinating reagents. Chem. Sci. 2018, 9, 8692-8702.
https://doi.org/10.1039/C8SC03596B

[5]. André, V.; Lahrache, H.; Robin, S.; Rousseau, G. Reaction of unsaturated phosphonate monoesters with bromo- and iodo(bis-collidine) hexafluorophosphates. Tetrahedron 2007, 63, 10059-10066.
https://doi.org/10.1016/j.tet.2007.07.032

[6]. CRC handbook of chemistry and physics; Haynes, W. M., Ed.; 95th ed.; CRC Press: London, England, 2014.

[7]. Handbook of reagents for organic synthesis: Acidic and basic reagents; Reich, H. J.; Rigby, J. H., Eds.; John Wiley & Sons: Chichester, England, 1999.

[8]. Aditya Prasad, A.; Muthu, K.; Rajasekar, M.; Meenatchi, V.; Meenakshisundaram, S. P. Synthesis, crystal growth, characterization and theoretical studies of 4-aminobenzophenonium picrate. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 135, 46-54.
https://doi.org/10.1016/j.saa.2014.06.154

[9]. Dhanabal, T.; Amirthaganesan, G.; Dhandapani, M.; Das, S. K. Synthesis, structure, thermal and NLO characterization of 4-hydroxy tetra-methylpiperazinium picrate crystals. J. Chem. Sci. (Bangalore) 2012, 124, 951-961.
https://doi.org/10.1007/s12039-012-0289-2

[10]. Chandramohan, A.; Bharathikannan, R.; Chandrasekaran, J.; Maadeswaran, P.; Renganathan, R.; Kandavelu, V. Synthesis, crystal growth and characterization of a new organic NLO material: Caffeinium picrate (CAFP)-A charge transfer molecular complex salt. J. Cryst. Growth 2008, 310, 5409-5415.
https://doi.org/10.1016/j.jcrysgro.2008.09.020

[11]. Sudharsana, N.; Muthunatesan, S.; Jasmine Priya, G.; Krishnakumar, V.; Nagalakshmi, R. Experimental and theoretical studies of 2,5-dichloroanilinium picrate. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 121, 53-62.
https://doi.org/10.1016/j.saa.2013.10.047

[12]. Chandramohan, A.; Bharathikannan, R.; Kandavelu, V.; Chandrasekaran, J.; Kandhaswamy, M. A. Synthesis, crystal growth, structural, thermal and optical properties of naphthalene picrate an organic NLO material. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2008, 71, 755-759.
https://doi.org/10.1016/j.saa.2008.01.036

[13]. Hankin, S. M.; John, P.; Smith, G. P. Laser time-of-flight mass spectrometry of PAH−Picrate complexes. Anal. Chem. 1997, 69, 2927-2930.
https://doi.org/10.1021/ac970222o

[14]. Koizumi, S.; Matsunaga, Y. The phenanthrene/anthracene-picric acid system. Bull. Chem. Soc. Jpn. 1974, 47, 9-13.
https://doi.org/10.1246/bcsj.47.9

[15]. Akhavan, J. The chemistry of explosives; Royal Society of Chemistry: Cambridge, England, 1998.

[16]. Peng, Y.; Zhang, A.-J.; Dong, M.; Wang, Y.-W. A colorimetric and fluorescent chemosensor for the detection of an explosive-2,4,6-trinitrophenol (TNP). Chem. Commun. (Camb.) 2011, 47, 4505.
https://doi.org/10.1039/c1cc10400d

[17]. Schechter, B.; Arnon, R.; Freedman, Y.; Chen, L.; Wilchek, M. Liver accumulation of TNP-modified streptavidin and avidin: Potential use for targeted radio- and chemotherapy. J. Drug Target. 1996, 4, 171-179.
https://doi.org/10.3109/10611869609015974

[18]. Stilinović, V.; Kaitner, B. Hydrogen bonding in pyridinium picrates: From discrete ion pairs to 3D networks. Cryst. Growth Des. 2011, 11, 4110-4119.
https://doi.org/10.1021/cg200684x

[19]. Bruker (2008). SHELXL-97. Bruker AXS Inc., Madison, Wisconsin, USA.

[20]. Bruker (1997). SHELXS-97. Bruker AXS Inc., Madison, Wisconsin, USA.

[21]. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 09, Revision E.01, Gaussian, Inc., Wallingford CT, 2009.

[22]. Aditya Prasad, A.; Muthu, K.; Rajasekar, M.; Meenatchi, V.; Meenakshisundaram, S. P. Crystal growth, characterization and theoretical studies of 4-aminopyridinium picrate. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 135, 805-813.
https://doi.org/10.1016/j.saa.2014.07.069

[23]. Srivastava, K. K.; Shubha, S.; Tanweer, A.; Rituraj An Overview of Picric Acid. Der Pharma Chemica 2017, 9, 64-75.

[24]. Coates, J. Interpretation of infrared spectra, A practical approach. Encyclopedia of Analytical Chemistry 2006.
https://doi.org/10.1002/9780470027318.a5606

[25]. Smith, B. C. Infrared spectral interpretation: A systematic approach; CRC Press: Boca Raton, FL, 1998.

[26]. Hendra, P.; etc.; Jones, C.; Warnes, G. Fourier transform Raman spectroscopy: Instrumental and chemical applications; Ellis Horwood Ltd, Publisher: Harlow, England, 1991.

[27]. Clarkson, J.; Smith, W. E.; Batchelder, D. N.; Smith, D. A.; Coats, A. M. A theoretical study of the structure and vibrations of 2,4,6-trinitrotolune. J. Mol. Struct. 2003, 648, 203-214.
https://doi.org/10.1016/S0022-2860(03)00024-3

[28]. Aydın, F.; Arslan, N. B. Synthesis, spectral properties, crystal structure and theoretical calculations of a new geminal diamine: 2,2,2-Trichloro-N,N׳-bis(2-nitrophenyl)-ethane-1,1-diamine. J. Mol. Struct. 2021, 1232, 129976.
https://doi.org/10.1016/j.molstruc.2021.129976

[29]. Tauc, J.; Grigorovici, R.; Vancu, A. Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi B Basic Res. 1966, 15, 627-637.
https://doi.org/10.1002/pssb.19660150224

[30]. Fukui, K.; Yonezawa, T.; Shingu, H. A molecular orbital theory of reactivity in aromatic hydrocarbons. J. Chem. Phys. 1952, 20, 722-725.
https://doi.org/10.1063/1.1700523

[31]. Parr, R. G.; Szentpály, L. v.; Liu, S. Electrophilicity index. J. Am. Chem. Soc. 1999, 121, 1922-1924.
https://doi.org/10.1021/ja983494x

[32]. Murray, J. S. Molecular electrostatic potentials: Concepts and applications; Murray, J. S.; Sen, K., Eds.; Elsevier Science & Technology, 1996.

[33]. Geerlings, P.; Proft, F. D.; Ayers, P. W. Chapter 1 Chemical reactivity and the shape function. In Theoretical and Computational Chemistry; Elsevier, 2007; pp. 1-17.
https://doi.org/10.1016/S1380-7323(07)80002-1

[34]. Jauhar, R. O. M. U.; Viswanathan, V.; Vivek, P.; Vinitha, G.; Velmurugan, D.; Murugakoothan, P. A new organic NLO material isonicotinamidium picrate (ISPA): crystal structure, structural modeling and its physico-chemical properties. RSC Adv. 2016, 6, 57977-57985.
https://doi.org/10.1039/C6RA10477K

[35]. Bevan Ott, J.; Boerio-Goates, J. Chemical thermodynamics: Advanced applications: Advanced applications; Academic Press: San Diego, CA, 2000.


Supporting information


The Supplementary Material for this article can be found online at: Supplementary files

How to cite


Arslan, N.; Aydin, F. Eur. J. Chem. 2022, 13(4), 468-477. doi:10.5155/eurjchem.13.4.468-477.2349
Arslan, N.; Aydin, F. The crystal magnification, characterization, X-ray single crystal structure, thermal behavior, and computational studies of the 2,4,6-trimethylpyridinium picrate. Eur. J. Chem. 2022, 13(4), 468-477. doi:10.5155/eurjchem.13.4.468-477.2349
Arslan, N., & Aydin, F. (2022). The crystal magnification, characterization, X-ray single crystal structure, thermal behavior, and computational studies of the 2,4,6-trimethylpyridinium picrate. European Journal of Chemistry, 13(4), 468-477. doi:10.5155/eurjchem.13.4.468-477.2349
Arslan, Nahide, & Fatma Aydin. "The crystal magnification, characterization, X-ray single crystal structure, thermal behavior, and computational studies of the 2,4,6-trimethylpyridinium picrate." European Journal of Chemistry [Online], 13.4 (2022): 468-477. Web. 5 Feb. 2023
Arslan, Nahide, AND Aydin, Fatma. "The crystal magnification, characterization, X-ray single crystal structure, thermal behavior, and computational studies of the 2,4,6-trimethylpyridinium picrate" European Journal of Chemistry [Online], Volume 13 Number 4 (31 December 2022)

The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item



DOI Link: https://doi.org/10.5155/eurjchem.13.4.468-477.2349


CrossRef | Scilit | GrowKudos | Researchgate | Publons | ScienceGate | Scite | Lens | OUCI

WorldCat Paperbuzz | LibKey Citeas | Dimensions | Semanticscholar | Plumx | Kopernio | Zotero | Mendeley

ZoteroSave to Zotero MendeleySave to Mendeley



European Journal of Chemistry 2022, 13(4), 468-477 | doi: https://doi.org/10.5155/eurjchem.13.4.468-477.2349 | Get rights and content

Refbacks

  • There are currently no refbacks.




Copyright (c) 2022 Authors

Creative Commons License
This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at http://www.eurjchem.com/index.php/eurjchem/pages/view/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (http://www.eurjchem.com/index.php/eurjchem/pages/view/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).



© Copyright 2010 - 2023  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2010-2023 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.