European Journal of Chemistry

Synthesis, analysis of single crystal structure and computational studies on a novel picrate derivative: 2-(Pyridine-2-ylthio)pyridine-1-ium picrate

Crossmark


Main Article Content

Fatma Aydin
Asli Ozturk Kiraz

Abstract

A new organic salt, 2-(pyridine-2-ylthio)pyridine-1-ium picrate (C16H11N5O7S: 2-PyrTPPc), has been synthesized and characterized using various spectroscopic methods such as 1H NMR, 13C NMR, and FT-IR. The crystal structure of the title compound was analyzed using X-ray structure analysis, which revealed that it belongs to the monoclinic P21/c space group with a = 16.876(4) Å, b = 7.6675(18) Å, c = 13.846(3) Å, Z = 4, and V = 1766.9(7) Å3. The molecular packing of the compound showed the presence of several intermolecular hydrogen bonds between different atoms. The electronic properties of the crystal were investigated using density functional theory (DFT) with B3LYP/6-311G(d,p) level. Frontier molecular orbitals were drawn and related global quantities such as electronic chemical potential, chemical hardness-softness, electrophilicity, HOMO and LUMO energy eigenvalues, and the difference between HOMO and LUMO (∆E) were calculated and discussed. TG/DTG analysis revealed the thermal stability of the 2-PyrTPPc crystal. The single stage of decomposition and the sharpness of the peak in the temperature range of 157-224 °C illustrated the purity and good crystallinity of the grown crystal. The different vibration modes of the 2-PyrTPPc molecule were determined by analyzing the FT-IR and FT-Raman spectra. The detection of vibrations of the pyrNH+ and aromatic thioether moiety supports the confirmation of the di(pyridin-2-yl)sulfane structure through the intermediate formed by the transfer of the proton from picric acid to 2-mercaptopyridine.


icon graph This Abstract was viewed 19 times | icon graph Article PDF downloaded 1 times icon graph Article CIF FILE downloaded 0 times

How to Cite
(1)
Aydin, F.; Kiraz, A. O. Synthesis, Analysis of Single Crystal Structure and Computational Studies on a Novel Picrate Derivative: 2-(Pyridine-2-ylthio)pyridine-1-Ium Picrate. Eur. J. Chem. 2025, 16, 117-128.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Moran, D.; Sukcharoenphon, K.; Puchta, R.; Schaefer, H. F.; Schleyer, P. v.; Hoff, C. D. 2-Pyridinethiol/2-Pyridinethione Tautomeric Equilibrium. A Comparative Experimental and Computational Study. J. Org. Chem. 2002, 67 (25), 9061-9069.
https://doi.org/10.1021/jo0263768

[2]. Jones, R. A.; Katritzky, A. R. 721. Tautomeric pyridines. Part I. Pyrid-2- and -4-thione. J. Chem. Soc. 1958, 3610.
https://doi.org/10.1039/jr9580003610

[3]. Barton, D. H.; Hesse, R. H.; O'Sullivan, A. C.; Pechet, M. M. A new procedure for the conversion of thiols into reactive sulfenylating agents. J. Org. Chem. 1991, 56 (23), 6697-6702.
https://doi.org/10.1021/jo00023a039

[4]. Hoogerheide, J.; Scott, R. Use of 2-mercaptopyridine for the determination of alkylating agents in complex matrices: application to dimethyl sulfate. Talanta 2005, 65 (2), 453-460.
https://doi.org/10.1016/j.talanta.2004.06.023

[5]. De C.T. Carrondo, M.; Dias, A.; Garcia, M. H.; Mirpuri, A.; Fátima, M.; Piedade, M.; Salema, M. S. Mercaptopyridine complexes of dicyclopentadienylmolybdenum and -tungsten: Preparation and electrochemistry. The structure of [Mo(η5-C5H5)2(2-SNC5H4)][PF6]. Polyhedron 1989, 8 (20), 2439-2447.
https://doi.org/10.1016/S0277-5387(89)80008-7

[6]. Yoon, S. A.; Kim, W.; Sharma, A.; Verwilst, P.; Won, M.; Lee, M. H. A Fluorescent Cy7-Mercaptopyridine for the Selective Detection of Glutathione over Homocysteine and Cysteine. Sensors 2018, 18 (9), 2897.
https://doi.org/10.3390/s18092897

[7]. Maruyama, K.; Nagasawa, H.; Suzuki, A. 2,2′-Bispyridyl disulfide rapidly induces intramolecular disulfide bonds in peptides. Peptides 1999, 20 (7), 881-884.
https://doi.org/10.1016/S0196-9781(99)00076-5

[8]. Suguna, S.; Subbareddy, Y.; Jose, T. J.; Chand, N. R.; Ramakrishna, D.; Praveen, P. L. Synthesis, growth, and optical applications of N, N′-bis (2-aminophenyl) ethane-1,2-diammonium picrate: An organic crystal. J. Mol. Struct. 2024, 1300, 137295.
https://doi.org/10.1016/j.molstruc.2023.137295

[9]. Kolandaivelu, S.; Rajamoni, J.; Kandasamy, S. N-H…O, C-H… O hydrogen-bonded supramolecular frameworks in 4-fluoroanilinium and dicyclohexylaminium picrate salts. Struct Chem 2019, 31 (3), 899-908.
https://doi.org/10.1007/s11224-019-01471-1

[10]. Ramarajan, D.; Tamilarasan, K.; Milenković, D.; Marković, Z.; Sudha, S.; Subhapriya, P. Experimental and theoretical investigations of an organic nonlinear optical material p-toluidinium picrate - A comparative study. J. Mol. Struct. 2019, 1195, 73-84.
https://doi.org/10.1016/j.molstruc.2019.05.094

[11]. Arslan, N. B.; Aydin, F. The crystal magnification, characterization, X-ray single crystal structure, thermal behavior, and computational studies of the 2,4,6-trimethylpyridinium picrate. Eur. J. Chem. 2022, 13 (4), 468-477.
https://doi.org/10.5155/eurjchem.13.4.468-477.2349

[12]. Aydin, F.; Arslan, N. B. Synthesis and structural characterization and DFT calculations of the organic salt crystal obtaining 9-aminoacridine and picric acid: 9-Aminoacridinium picrate. Eur. J. Chem. 2023, 14 (3), 376-384.
https://doi.org/10.5155/eurjchem.14.3.376-384.2462

[13]. Karthigha, S.; Krishnamoorthi, C. Synthesis, growth, crystal structure, optical and third order nonlinear optical properties of quinolinium derivative single crystal: PNQI. J. Phys. Chem. Solids 2018, 114, 133-140.
https://doi.org/10.1016/j.jpcs.2017.10.043

[14]. Chandramohan, A.; Bharathikannan, R.; Kandavelu, V.; Chandrasekaran, J.; Kandhaswamy, M. Synthesis, crystal growth, structural, thermal and optical properties of naphthalene picrate an organic NLO material. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 2008, 71 (3), 755-759.
https://doi.org/10.1016/j.saa.2008.01.036

[15]. Bozkuş, S. I.; Hope, K. S.; Yüksel, B.; Atҫeken, N.; Nazır, H.; Atakol, O.; Şen, N. Characterization and properties of a novel energetic Co-crystal formed between 2,4,6-Trinitrophenol and 9-Bromoanthracene. J. Mol. Struct. 2019, 1192, 145-153.
https://doi.org/10.1016/j.molstruc.2019.04.109

[16]. Ghazaryan, V.; Fleck, M.; Petrosyan, A. Structure and vibrational spectra of l-alanine l-alaninium picrate monohydrate. J. Mol. Struct. 2012, 1015, 51-55.
https://doi.org/10.1016/j.molstruc.2012.02.007

[17]. Fleck, M.; Ghazaryan, V.; Petrosyan, A. β-Alaninium picrate: A new salt with di-β-alaninium dimeric cation. J. Mol. Struct. 2012, 1019, 91-96.
https://doi.org/10.1016/j.molstruc.2012.03.066

[18]. Ghazaryan, V.; Zakharov, B.; Boldyreva, E.; Petrosyan, A. l-Methioninium picrate. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 2015, 142, 344-349.
https://doi.org/10.1016/j.saa.2015.02.036

[19]. Suguna, S.; Anbuselvi, D.; Jayaraman, D.; Nagaraja, K.; Jeyaraj, B. Synthesis, growth, structural and optical studies of organic nonlinear optical material - Piperazine-1,4-diium bis 2,4,6-trinitrophenolate. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 2014, 132, 330-338.
https://doi.org/10.1016/j.saa.2014.04.095

[20]. Alexandar, A.; Surendran, P.; Sakthy Priya, S.; Lakshmanan, A.; Rameshkumar, P. Growth and characterizations of L-methioninium picrate single crystal for nonlinear optical applications. J. Nonlinear Optic. Phys. Mat. 2016, 25 (04), 1650052.
https://doi.org/10.1142/S0218863516500521

[21]. Levine, R.; Leake, W. W. Rearrangement in the Reaction of 3-Bromopyridine with Sodium Amide and Sodioacetophenone. Science 1955, 121 (3152), 780-780.
https://doi.org/10.1126/science.121.3152.780

[22]. Puleo, T. R.; Bandar, J. S. Base-catalyzed aryl halide isomerization enables the 4-selective substitution of 3-bromopyridines. Chem. Sci. 2020, 11 (38), 10517-10522.
https://doi.org/10.1039/D0SC02689A

[23]. Janczak, J. Structure, vibrational characterization and DFT calculations of 1-(diaminomethylene)thiouron-1-ium 2,3-pyridinedicarboxylate. Struct Chem 2023, 35 (4), 1183-1198.
https://doi.org/10.1007/s11224-023-02262-5

[24]. Kannan, V.; Santha, A.; Sugumar, P.; Brahadeeswaran, S. Investigations on thermal, dielectric, and quantum chemical calculations of 2-amino-5-chloropyridinium 4-aminobenzoate: a nonlinear optical material. Struct Chem 2023, 35 (3), 977-991.
https://doi.org/10.1007/s11224-023-02232-x

[25]. Sheldrick, G. M. SHELXS-97 and SHELXL-97 Program for Crystal Structure Solution and Refinement. University of Gottingen, Germany, Germany, 1997.

[26]. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian, Inc., Wallingford CT, 2004.

[27]. Dennington, R.; Keith, T. A.; Millam, J. M. GaussView, Version 6, Semichem Inc.; Shawnee Mission, KS, 2016.

[28]. Foresman, J. B.; Frisch, Æ. In Exploring Chemistry with Electronic Structure Methods, 2nd ed.; Gaussian Inc.: Pittsburgh, PA, 1996.

[29]. Walters, P.; Stahl, M. Babel,Vversion 1.1. Department of Chemistry, University of Arizona, Tucson, AZ 85721, 1994.

[30]. Essayem, N.; Lorentz, C.; Tuel, A.; Tâarit, Y. B. 1H NMR evidence for the bi-pyridinium nature of the pyridine salt of H3PW12O40. Catal. Commun. 2005, 6 (8), 539-541.
https://doi.org/10.1016/j.catcom.2005.05.006

[31]. Cremer, D.; Pople, J. A. General definition of ring puckering coordinates. J. Am. Chem. Soc. 1975, 97 (6), 1354-1358.
https://doi.org/10.1021/ja00839a011

[32]. Burnett, M. N.; Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.

[33]. Steiner, T. The Hydrogen Bond in the Solid State. Angew. Chem. Int. Ed. 2002, 41 (1), 48-76.
https://doi.org/10.1002/1521-3773(20020104)41:1<48::AID-ANIE48>3.0.CO;2-U

[34]. Cook, D. Vibrational spectra of pyridinium salts. Can. J. Chem. 1961, 39 (10), 2009-2024.
https://doi.org/10.1139/v61-271

[35]. Bryndal, I.; Drozd, M.; Lis, T.; Zaręba, J. K.; Ratajczak, H. Structural diversity of hydrogen-bonded complexes comprising phenol-based and pyridine-based components: NLO properties and crystallographic and spectroscopic studies. CrystEngComm 2020, 22 (27), 4552-4565.
https://doi.org/10.1039/D0CE00606H

[36]. Moura, A. L.; Machado, P. H.; Corrêa, R. S. Picrate salts with bipyridine derivatives: intramolecular and intermolecular aspects. Struct Chem 2023, 34 (5), 1817-1826.
https://doi.org/10.1007/s11224-023-02126-y

[37]. Cao, H.; Ben, T.; Su, Z.; Zhang, M.; Kan, Y.; Yan, X.; Zhang, W.; Wei, Y. Absolute Configuration Determination of a New Chiral Rigid Bisetherketone Macrocycle Containing Binaphthyl and Thioether Moieties by Vibrational Circular Dichroism. Macro Chemistry & Physics 2005, 206 (11), 1140-1145.
https://doi.org/10.1002/macp.200400486

[38]. Socrates, G. Infrared and Raman Characteristic Group Frequencies: Tables and Charts, 3rd Edition, John Wiley & Sons, Inc., New York 2004.

[39]. Gümüs, H. P.; Tamer, O.; Avci, D.; Tarcan, E.; Atalay, Y. Theoretical investigations on nonlinear optical and spectroscopic properties of 6-(3,3,4,4,4-pentafluoro-2-hydroxy-1-butenyl)-2,4-pyrimidinedione: An efficient NLO material. Russ. J. Phys. Chem. 2014, 88 (13), 2348-2358.
https://doi.org/10.1134/S0036024414130068

[40]. Zhang, J.; Li, T.; Liang, J.; Chen, L.; Zeng, Y.; Yang, L.; Zhou, J.; Ni, C. Synthesis, crystal structure, vibrational spectra, optical properties of disubstituted benzyl triphenylphosphinium picrate: Experiment and DFT/TDDFT calculations. J. Mol. Struct. 2020, 1210, 127972.
https://doi.org/10.1016/j.molstruc.2020.127972

[41]. Parr, R. G.; Pearson, R. G. Absolute hardness: companion parameter to absolute electronegativity. J. Am. Chem. Soc. 1983, 105 (26), 7512-7516.
https://doi.org/10.1021/ja00364a005

[42]. Xavier, S.; Periandy, S.; Ramalingam, S. NBO, conformational, NLO, HOMO-LUMO, NMR and electronic spectral study on 1-phenyl-1-propanol by quantum computational methods. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 2015, 137, 306-320.
https://doi.org/10.1016/j.saa.2014.08.039

[43]. Chattaraj, P. K.; Sarkar, U.; Roy, D. R. Electrophilicity Index. Chem. Rev. 2006, 106 (6), 2065-2091.
https://doi.org/10.1021/cr040109f

[44]. Parr, R. G.; Szentpály, L. v.; Liu, S. Electrophilicity Index. J. Am. Chem. Soc. 1999, 121 (9), 1922-1924.
https://doi.org/10.1021/ja983494x

[45]. Miar, M.; Shiroudi, A.; Pourshamsian, K.; Oliaey, A. R.; Hatamjafari, F. Theoretical investigations on the HOMO-LUMO gap and global reactivity descriptor studies, natural bond orbital, and nucleus-independent chemical shifts analyses of 3-phenylbenzo[d]thiazole-2(3H)-imine and its para-substituted derivatives: Solvent and substituent effects. J. Chem. Res. 2020, 45 (1-2), 147-158.
https://doi.org/10.1177/1747519820932091

[46]. Kayalvizhi, K.; Balakrishnan, C.; Suppuraj, P.; Lakshmanan, P.; Kalpana, S.; Senthan, S. Synthesis, structural characterization, Hirshfeld surface and theoretical studies of 2-bromopyridinium picrate. Mol. Cryst. Liq. Cryst. 2023, 760 (1), 85-98.
https://doi.org/10.1080/15421406.2023.2167565

[47]. Politzer, P.; Murray, J. S. The fundamental nature and role of the electrostatic potential in atoms and molecules. Theor. Chem. Acc.: Theory Comput. Model. (Theor. Chim. Acta) 2002, 108 (3), 134-142.
https://doi.org/10.1007/s00214-002-0363-9

[48]. Geerlings, P.; Proft, F. D.; Ayers, P. Chapter 1 Chemical reactivity and the shape function. Theor. Comput. Chem. 2007, 19, 1-17.
https://doi.org/10.1016/S1380-7323(07)80002-1

[49]. Snehalatha, M.; Ravikumar, C.; Hubert Joe, I.; Sekar, N.; Jayakumar, V. Spectroscopic analysis and DFT calculations of a food additive Carmoisine. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 2009, 72 (3), 654-662.
https://doi.org/10.1016/j.saa.2008.11.017

[50]. James, C.; Raj, A. A.; Reghunathan, R.; Jayakumar, V. S.; Joe, I. H. Structural conformation and vibrational spectroscopic studies of 2,6‐bis(p‐N,N‐dimethyl benzylidene)cyclohexanone using density functional theory. J. Raman Spectroscopy 2006, 37 (12), 1381-1392.
https://doi.org/10.1002/jrs.1554

[51]. Liu, J.; Chen, Z.; Yuan, S. Study on the prediction of visible absorption maxima of azobenzene compounds. J. Zheijang Univ Sci B. 2005, 6 (6), 584-589.
https://doi.org/10.1631/jzus.2005.B0584

[52]. Sebastian, S.; Sundaraganesan, N. The spectroscopic (FT-IR, FT-IR gas phase, FT-Raman and UV) and NBO analysis of 4-Hydroxypiperidine by density functional method. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 2010, 75 (3), 941-952.
https://doi.org/10.1016/j.saa.2009.11.030

[53]. Coats, A. W.; Redfern, J. P. Thermogravimetric analysis. A review. Analyst 1963, 88 (1053), 906.
https://doi.org/10.1039/an9638800906

[54]. Jauhar, R. M.; Viswanathan, V.; Vivek, P.; Vinitha, G.; Velmurugan, D.; Murugakoothan, P. A new organic NLO material isonicotinamidium picrate (ISPA): crystal structure, structural modeling and its physico-chemical properties. RSC. Adv. 2016, 6 (63), 57977-57985.
https://doi.org/10.1039/C6RA10477K

[55]. Ott, J. B.; Boerio-Goates, J.; Beasley, D. Chemical Thermodynamics: Principles and Applications. Appl. Mech. Rev. 2001, 54 (6), B110-B110.
https://doi.org/10.1115/1.1421125

TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

License Terms

by-nc

Copyright © 2025 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).