European Journal of Chemistry

Synthesis and structural characterization and DFT calculations of the organic salt crystal obtaining 9-aminoacridine and picric acid: 9-Aminoacridinium picrate

Crossmark


Main Article Content

Fatma Aydin
Nahide Burcu Arslan

Abstract

Organic salt, 9-aminoacridinium picrate (9-AAcPc), containing equimolar quantities of 9-aminoacridine and picric acid was obtained and a single crystal was grown by the slow evaporation method in the mixture of methanol: tetrahydrofuran solvent (1: 1, v: v). The molecular structure of the prepared compound was confirmed by FT-IR, 1H NMR, and 13C NMR spectroscopic methods, as well as single crystal X-ray diffraction analysis. The X-ray diffraction analysis of the crystal structure of the title compound showed the presence of the triclinic space group P-1 with no. 2, a = 8.2811(7) Å, b = 10.1003(9) Å, c = 13.4484(13) Å, α = 83.521(3)°, β = 83.330(3)°, γ = 66.595(3)°, = 1022.56(16) Å3, Z = 2, μ(MoKα) = 0.108 mm-1, Dcalc = 1.375 g/cm3, 56338 reflections measured (5.89° ≤ 2Θ ≤ 56.704°), 5097 unique (Rint = 0.0400, Rsigma = 0.0210) which were used in all calculations. The final R1 was 0.0552 (I > 2σ(I)) and wR2 was 0.1757 (all data). The molecular geometry was also optimized using density functional theory. The frontier molecular orbitals were calculated, and we discussed the probability that the proton transfers from the phenolic OH group of picric acid to different nitrogen units. The calculated electronic structure properties of the title molecule, such as the HOMO and LUMO analysis, and different molecular electrostatic potential maps, were obtained by using the density functional theory method, and the calculated structure was compared with the experimental structure. The thermal stability of the crystal was also analyzed using the TGA/DTG technique.


icon graph This Abstract was viewed 531 times | icon graph Article PDF downloaded 307 times icon graph Article CIF FILE downloaded 0 times

How to Cite
(1)
Aydin, F.; Arslan, N. B. Synthesis and Structural Characterization and DFT Calculations of the Organic Salt Crystal Obtaining 9-Aminoacridine and Picric Acid: 9-Aminoacridinium Picrate. Eur. J. Chem. 2023, 14, 376-384.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Morrin Acheson, R. The chemistry of heterocyclic compounds, acridines; John Wiley & Sons, 2009.

[2]. Gellerman, G.; Gaisin, V.; Brider, T. One-pot derivatization of medicinally important 9-aminoacridines by reductive amination and SNAr reaction. Tetrahedron Lett. 2010, 51, 836-839.
https://doi.org/10.1016/j.tetlet.2009.12.020

[3]. Stewart, J. T. Synthesis and Biological Activity of 9-substituted Acridines. J. Pharm. Sci. 1973, 62, 1357-1358.
https://doi.org/10.1002/jps.2600620830

[4]. Sebestik, J.; Hlavacek, J.; Stibor, I. A role of the 9-aminoacridines and their conjugates in a life science. Curr. Protein Pept. Sci. 2007, 8, 471-483.
https://doi.org/10.2174/138920307782411400

[5]. Manivannan, C.; Renganathan, R. Spectroscopic investigation on the interaction of 9-Aminoacridine with certain dyes. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2012, 95, 685-692.
https://doi.org/10.1016/j.saa.2012.04.078

[6]. Maltman, B. A.; Dunsmore, C. J.; Couturier, S. C. M.; Tirnaveanu, A. E.; Delbederi, Z.; McMordie, R. A. S.; Naredo, G.; Ramage, R.; Cotton, G. 9-Aminoacridine peptide derivatives as versatile reporter systems for use in fluorescence lifetime assays. Chem. Commun. (Camb.) 2010, 46, 6929.
https://doi.org/10.1039/c0cc01901a

[7]. Vermillion-Salsbury, R. L.; Hercules, D. M. 9-Aminoacridine as a matrix for negative mode matrix-assisted laser desorption/ionization. Rapid Commun. Mass Spectrom. 2002, 16, 1575-1581.
https://doi.org/10.1002/rcm.750

[8]. Ahmed, S. A.; Obi-Egbedi, N. O.; Bamgbose, J. T.; Adeogun, A. I. Solvent enhancement of electronic intensity in acridine and 9-aminoacridine. J. Saudi Chem. Soc. 2016, 20, S286-S292.
https://doi.org/10.1016/j.jscs.2012.11.002

[9]. Stark, M. M.; Hall, N. C.; Nicholson, R. J.; Soelberg, K. 9-Aminoacridine, an effective antibacterial agent with caries-disclosing features. Oral Surg. Oral Med. Oral Pathol. 1968, 26, 560-562.
https://doi.org/10.1016/0030-4220(68)90337-X

[10]. Anikin, L.; Pestov, D. G. 9-aminoacridine inhibits ribosome biogenesis by targeting both transcription and processing of ribosomal RNA. Int. J. Mol. Sci. 2022, 23, 1260.
https://doi.org/10.3390/ijms23031260

[11]. Fornasiero, D.; Kurucsev, T. The binding of 9-aminoacridine to calf thymus DNA in aqueous solution electronic spectral studies. Biophys. Chem. 1985, 23, 31-37.
https://doi.org/10.1016/0301-4622(85)80061-2

[12]. Mangueira, V. M.; de Sousa, T. K. G.; Batista, T. M.; de Abrantes, R. A.; Moura, A. P. G.; Ferreira, R. C.; de Almeida, R. N.; Braga, R. M.; Leite, F. C.; Medeiros, K. C. de P.; Cavalcanti, M. A. T.; Moura, R. O.; Silvestre, G. F. G.; Batista, L. M.; Sobral, M. V. A 9-aminoacridine derivative induces growth inhibition of Ehrlich ascites carcinoma cells and antinociceptive effect in mice. Front. Pharmacol. 2022, 13.
https://doi.org/10.3389/fphar.2022.963736

[13]. Chen, X.; Zhang, Y.; Chen, Y.; Zhang, J.; Chen, J.; Li, M.; Cao, W.; Chen, J. Synthesis and characterization of oxadisilole-fused 9-aminoacridines and 12-aminobenzo[b]acridines: Oxadisilole-fused 9-aminoacridines and 12-aminobenzo[b]acridines. European J. Org. Chem. 2014, 2014, 4170-4178.
https://doi.org/10.1002/ejoc.201402361

[14]. Su, T.-L.; Lin, Y.-W.; Chou, T.-C.; Zhang, X.; Bacherikov, V. A.; Chen, C.-H.; Liu, L. F.; Tsai, T.-J. Potent antitumor 9-anilinoacridines and acridines bearing an alkylating N-mustard residue on the acridine chromophore: Synthesis and biological activity. J. Med. Chem. 2006, 49, 3710-3718.
https://doi.org/10.1021/jm060197r

[15]. Smith, M. B.; March, J. March's advanced organic chemistry: Reactions, mechanisms, and structure; 7th ed.; Wiley-Blackwell: Hoboken, NJ, 2012.

[16]. CRC handbook of chemistry and physics; Haynes, W. M., Ed.; 95th ed.; CRC Press: London, England, 2014.

[17]. Ismail, M.; Khan, M. I.; Khan, S. B.; Akhtar, K.; Khan, M. A.; Asiri, A. M. Catalytic reduction of picric acid, nitrophenols and organic azo dyes via green synthesized plant supported Ag nanoparticles. J. Mol. Liq. 2018, 268, 87-101.
https://doi.org/10.1016/j.molliq.2018.07.030

[18]. Arslan, N. B.; Aydin, F. The crystal magnification, characterization, X-ray single crystal structure, thermal behavior, and computational studies of the 2,4,6-trimethylpyridinium picrate. Eur. J. Chem. 2022, 13, 468-477.
https://doi.org/10.5155/eurjchem.13.4.468-477.2349

[19]. Adam, A. M. A. Structural, thermal, morphological and biological studies of proton-transfer complexes formed from 4-aminoantipyrine with quinol and picric acid. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2013, 104, 1-13.
https://doi.org/10.1016/j.saa.2012.11.042

[20]. Stilinović, V.; Kaitner, B. Hydrogen bonding in pyridinium picrates: From discrete ion pairs to 3D networks. Cryst. Growth Des. 2011, 11, 4110-4119.
https://doi.org/10.1021/cg200684x

[21]. Sethuram, M.; Bhargavi, G.; Rajasehakaran, M. V.; Dhandapani, M.; Amirthaganesan, G. Synthesis, crystal growth and characterisation of 2-aminomethylpyridinium picrate (2-ampp)-a charge transfer molecular complex and organic nonlinear optical material. Optik (Stuttg.) 2014, 125, 55-60.
https://doi.org/10.1016/j.ijleo.2013.06.069

[22]. Farrugia, L. J. WinGX and ORTEP for Windows: an update. J. Appl. Crystallogr. 2012, 45, 849-854.
https://doi.org/10.1107/S0021889812029111

[23]. Sheldrick, G. M. SHELXL-97: Program for Crystal Structure Refinement, University of Gottingen, Germany, 1997.

[24]. Sheldrick, G. M. SHELXS-97: Program for the Solution of Crystal Structures, University of Gottingen, Germany, 1997.

[25]. Spek, A. L. Structure validation in chemical crystallography. Acta Crystallogr. D Biol. Crystallogr. 2009, 65, 148-155.
https://doi.org/10.1107/S090744490804362X

[26]. Hoja, J.; Reilly, A. M.; Tkatchenko, A. First-principles modeling of molecular crystals: structures and stabilities, temperature and pressure: First-principles modeling of molecular crystals. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2017, 7, e1294.
https://doi.org/10.1002/wcms.1294

[27]. Degen, T.; Sadki, M.; Bron, E.; König, U.; Nénert, G. The HighScore suite. Powder Diffr. 2014, 29, S13-S18.
https://doi.org/10.1017/S0885715614000840

[28]. Bender, C. J. Theoretical models of charge-transfer complexes. Chem. Soc. Rev. 1986, 15, 475.
https://doi.org/10.1039/cs9861500475

[29]. Foster, R. Organic Charge-transfer Complexes; Academic Press: San Diego, CA, 1969.

[30]. Nampally, V.; Palnati, M. K.; Baindla, N.; Varukolu, M.; Gangadhari, S.; Tigulla, P. Charge transfer complex between O-phenylenediamine and 2, 3-dichloro-5, 6-dicyano-1, 4-benzoquinone: Synthesis, spectro-photometric, characterization, computational analysis, and its biological applications. ACS Omega 2022, 7, 16689-16704.
https://doi.org/10.1021/acsomega.2c01177

[31]. Smith, B. Infrared spectral interpretation: A systematic approach; CRC Press, 2018.
https://doi.org/10.1201/9780203750841

[32]. Charisiadis, P.; Kontogianni, V.; Tsiafoulis, C.; Tzakos, A.; Siskos, M.; Gerothanassis, I. 1H-NMR as a structural and analytical tool of intra- and intermolecular hydrogen bonds of phenol-containing natural products and model compounds. Molecules 2014, 19, 13643-13682.
https://doi.org/10.3390/molecules190913643

[33]. Pearson, R. G. Chemical hardness and density functional theory. J. Chem. Sci. (Bangalore) 2005, 117, 369-377.
https://doi.org/10.1007/BF02708340

[34]. Brédas, J.-L. Organic electronics: Does a plot of the HOMO-LUMO wave functions provide useful information? Chem. Mater. 2017, 29, 477-478.
https://doi.org/10.1021/acs.chemmater.6b04947

[35]. Xu, Y.; Chu, Q.; Chen, D.; Fuentes, A. HOMO-LUMO gaps and molecular structures of polycyclic aromatic hydrocarbons in soot formation. Front. Mech. Eng. 2021, 7.
https://doi.org/10.3389/fmech.2021.744001

[36]. Geerlings, P.; Proft, F. D.; Ayers, P. W. Chapter 1 Chemical reactivity and the shape function. In Theoretical and Computational Chemistry; Elsevier, 2007; pp. 1-17.
https://doi.org/10.1016/S1380-7323(07)80002-1

[37]. Mageshwari, P. S. L.; Priya, R.; Krishnan, S.; Joseph, V.; Das, S. J. Growth, optical, thermal, mechanical and dielectric studies of sodium succinate hexahydrate (β phase) single crystal: A promising third order NLO material. Opt. Laser Technol. 2016, 85, 66-74.
https://doi.org/10.1016/j.optlastec.2016.06.002

[38]. Bevan Ott, J.; Boerio-Goates, J. Chemical Thermodynamics: Principles and applications; 2000.

Supporting Agencies

The Çanakkale Onsekiz Mart University Grants Commission for a research grant (Project Number, 2016/672), Çanakkale Onsekiz Mart University, 17100, Çanakkale, Turkey.
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2025 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).