European Journal of Chemistry

Synthesis, spectroscopic characterization, crystal structure and computational studies of two new N-aroyl-N′-(2,4,6-tribromophenyl)thioureas

Crossmark


Main Article Content

Nadide Burcu Arslan
Fatma Aydin

Abstract

Two new compounds, N-benzoyl-N'-tribromophenylthiourea (I) and 4-nitrobenzoyl-N'-tribromophenylthiourea (II), were synthesized and characterized by 1H NMR, 13C NMR, IR, and X-ray single crystal diffraction techniques. The molecular geometry of compounds I and II in the ground state has been calculated by using the density functional theory (DFT) method with the B3LYP/6-311G(d,p) basis set and compared with the experimental data. The calculated results show that the optimized geometry can reproduce well the crystal structural parameters. A detailed vibrational spectral analysis has been carried out, and assignments of the observed fundamental bands have been proposed on the basis of peak positions. The scaled theoretical frequencies show very good agreement with the experimental values. Frontier molecular orbitals energies (HOMO and LUMO), energy gap, and global chemical reactivity parameters such as ionization potential, electron affinity, chemical hardness, and chemical softness have been calculated, and the sites of electrophilic and nucleophilic regions where the molecular interactions likely to happen are identified. The molecular electrostatic potential and thermodynamic properties of the title compounds were investigated by theoretical calculations.


icon graph This Abstract was viewed 303 times | icon graph Article PDF downloaded 136 times icon graph Article CIF FILE downloaded 0 times icon graph Article CIF FILE downloaded 0 times

How to Cite
(1)
Arslan, N. B.; Aydin, F. Synthesis, Spectroscopic Characterization, Crystal Structure and Computational Studies of Two New N-Aroyl-N′-(2,4,6-tribromophenyl)thioureas. Eur. J. Chem. 2024, 15, 155-165.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Özgeriş, B. Design, synthesis, characterization, and biological evaluation of nicotinoyl thioureas as antimicrobial and antioxidant agents. J. Antibiot. (Tokyo) 2021, 74, 233-243.
https://doi.org/10.1038/s41429-020-00399-7

[2]. Rana, A.; Siddiqui, N.; Khan, S. A.; Ehtaishamul Haque, S.; Bhat, M. A. N-[(6-Substituted-1,3-benzothiazole-2-yl)amino]carbonothioyl-2/4-substituted benzamides: Synthesis and pharmacological evaluation. Eur. J. Med. Chem. 2008, 43, 1114-1122.
https://doi.org/10.1016/j.ejmech.2007.07.008

[3]. Asghar, F.; Rana, S.; Fatima, S.; Badshah, A.; Lal, B.; Butler, I. S. Biologically activehalo-substituted ferrocenyl thioureas: synthesis, spectroscopic characterization, and DFT calculations. New J Chem 2018, 42, 7154-7165.
https://doi.org/10.1039/C8NJ00483H

[4]. Soni, L. K.; Narsinghani, T.; Jain, R. Synthesis and antibacterial screening of some 1-aroyl-3-aryl thiourea derivatives. ISRN Med. Chem. 2014, 2014, 1-6, 393102.
https://doi.org/10.1155/2014/393102

[5]. Duan, L.-P.; Xue, J.; Xu, L.-L.; Zhang, H.-B. Synthesis 1-Acyl-3-(2'-aminophenyl) thioureas as Anti-Intestinal Nematode Prodrugs. Molecules 2010, 15, 6941-6947.
https://doi.org/10.3390/molecules15106941

[6]. Shaabanzadeh, M.; Khabari, F. One-pot diastereoselective synthesis of new spiro indenoquinoxaline derivatives containing cyclopropane ring. ARKIVOC 2009, 2009, 307-315.
https://doi.org/10.3998/ark.5550190.0010.b28

[7]. Aydın, F.; Ünver, H.; Aykaç, D.; İskeleli, N. O. Spectroscopic studies and structure of 4-(3-benzoylthioureido)benzoic acid. J. Chem. Crystallogr. 2010, 40, 1082-1086.
https://doi.org/10.1007/s10870-010-9799-2

[8]. Ozer, C. K.; Binzet, G.; Arslan, H. Crystal and molecular structure of bis(N-(diethylcarbamothioyl)cyclohexane carboxamido)copper(II) complex. Eur. J. Chem. 2020, 11, 319-323.
https://doi.org/10.5155/eurjchem.11.4.319-323.2047

[9]. Solmaz, U.; Gumus, I.; Binzet, G.; Celik, O.; Balci, G. K.; Dogen, A.; Arslan, H. Synthesis, characterization, crystal structure, and antimicrobial studies of novel thiourea derivative ligands and their platinum complexes. J. Coord. Chem. 2018, 71, 200-218.
https://doi.org/10.1080/00958972.2018.1427233

[10]. Luckay, R. C.; Mebrahtu, F.; Esterhuysen, C.; Koch, K. R. Extraction and transport of gold(III) using some acyl(aroyl)thiourea ligands and a crystal structure of one of the complexes. Inorg. Chem. Commun. 2010, 13, 468-470.
https://doi.org/10.1016/j.inoche.2010.01.010

[11]. Aydin, F.; Aykaç, D.; Burcu Arslan, N.; Kazak, C. Synthesis, characterization, and crystal structure of bis[4-(3′-benzoyl) thiocarbamidophenyl]ether. Crystallogr. Rep. 2014, 59, 955-960.
https://doi.org/10.1134/S1063774514070050

[12]. Contreras Aguilar, E.; Echeverría, G. A.; Piro, O. E.; Ulic, S. E.; Jios, J. L.; Tuttolomondo, M. E.; Molina, R. D. I.; Arena, M. E. Acyl thiourea derivatives: A study of crystallographic, bonding, biological and spectral properties. Chem. Phys. Lett. 2019, 715, 64-71.
https://doi.org/10.1016/j.cplett.2018.11.020

[13]. Aydin, F.; Arslan, N. B. Synthesis, crystal structure and cyclic voltammetric behavior of N-aroyl-N′-(4′-cyanophenyl)thioureas. Molbank 2022, 2022, M1316.
https://doi.org/10.3390/M1316

[14]. Pinter, B.; Fievez, T.; Bickelhaupt, F. M.; Geerlings, P.; De Proft, F. On the origin of the steric effect. Phys. Chem. Chem. Phys. 2012, 14, 9846.
https://doi.org/10.1039/c2cp41090g

[15]. Geiger, T.; Haupt, A.; Maichle-Mössmer, C.; Schrenk, C.; Schnepf, A.; Bettinger, H. F. Synthesis and photodimerization of 2- and 2,3-disubstituted anthracenes: Influence of steric interactions and London dispersion on diastereoselectivity. J. Org. Chem. 2019, 84, 10120-10135.
https://doi.org/10.1021/acs.joc.9b01317

[16]. Audu, O. Y.; Jooste, J.; Malan, F. P.; Ajani, O. O.; October, N. Synthesis, characterization, molecular structure, and computational studies on 4(1H)-pyran-4-one and its derivatives. J. Mol. Struct. 2021, 1245, 131077.
https://doi.org/10.1016/j.molstruc.2021.131077

[17]. Udofia, I. A.; Trust Ekama; Ogunbayo, T. B.; Oloba-Whenu, O. A.; Rhyman, L.; Isanbor, C.; Ramasami, P. Experimental and theoretical calculation of pKa values of substituted-2,4,6-trinitrodiphenylamines. J. Mol. Liq. 2023, 371, 120926.
https://doi.org/10.1016/j.molliq.2022.120926

[18]. Sheldrick, G. M. SHELXS-97 and SHELXL-97 Program for Crystal Structure Solution and Refinement. University of Gottingen, Germany, Germany, 1997.

[19]. Farrugia, L. J. WinGX and ORTEP for Windows: an update. J. Appl. Crystallogr. 2012, 45, 849-854.
https://doi.org/10.1107/S0021889812029111

[20]. Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648-5652.
https://doi.org/10.1063/1.464913

[21]. Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B Condens. Matter 1988, 37, 785-789.
https://doi.org/10.1103/PhysRevB.37.785

[22]. Ditchfield, R.; Hehre, W. J.; Pople, J. A. Self-consistent molecular-orbital methods. IX. An extended Gaussian-type basis for molecular-orbital studies of organic molecules. J. Chem. Phys. 1971, 54, 724-728.
https://doi.org/10.1063/1.1674902

[23]. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian09, Gaussian, Inc., Wallingford CT, 2009.

[24]. Molecular electrostatic potentials: Volume 3: Concepts and applications; Murray, J. S.; Sen, K., Eds.; Elsevier Science: London, England, ISBN: 978-0-444-82353-3, 1996.

[25]. Andersson, M. P.; Uvdal, P. New scale factors for harmonic vibrational frequencies using the B3LYP density functional method with the triple-ζ basis set 6-311+G(d,p). J. Phys. Chem. A 2005, 109, 2937-2941.
https://doi.org/10.1021/jp045733a

[26]. Dennington, R.; Keith, T. A.; Millam, J. M. GaussView, Version 5, Semichem Inc.; Shawnee Mission, KS, 2009.

[27]. Threlfall, T. The infrared spectra of amides. Part 1. The stretching vibrations of primary carboxamides. Vib. Spectrosc. 2022, 121, 103386.
https://doi.org/10.1016/j.vibspec.2022.103386

[28]. Larkin, P. Infrared and Raman spectroscopy: Principles and spectral interpretation; Elsevier Science Publishing: Philadelphia, PA, 2018.

[29]. Hassan, I. N. Synthesis, spectral characterization and crystal structural of 1-(2-Morpholinoethyl)-3-(3-phenylacryloyl)thiourea. Int. J. Phys. Sci. 2011, 6.
https://doi.org/10.5897/IJPS11.1458

[30]. Estévez-Hernández, O.; Otazo-Sánchez, E.; Hidalgo-Hidalgo de Cisneros, J. L.; Naranjo-Rodríguez, I.; Reguera, E. A Raman and infrared study of 1-furoyl-3-monosubstituted and 3,3-disubstituted thioureas. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2005, 62, 964-971.
https://doi.org/10.1016/j.saa.2005.04.016

[31]. Kirishnamaline, G.; Magdaline, J. D.; Chithambarathanu, T.; Aruldhas, D.; Anuf, A. R. Theoretical investigation of structure, anticancer activity and molecular docking of thiourea derivatives. J. Mol. Struct. 2021, 1225, 129118.
https://doi.org/10.1016/j.molstruc.2020.129118

[32]. Asghar, F.; Fatima, S.; Rana, S.; Badshah, A.; Butler, I. S.; Tahir, M. N. Synthesis, spectroscopic investigation, and DFT study of N,N′-disubstituted ferrocene-based thiourea complexes as potent anticancer agents. Dalton Trans. 2018, 47, 1868-1878.
https://doi.org/10.1039/C7DT04090C

[33]. Khurshid, A.; Saeed, A.; Shabir, G.; Gil, D. M.; Bolte, M.; Erben, M. F. Synthesis of phenazone based carboxamide under thiourea reaction conditions. Molecular and crystal structure, Hirshfeld surface analysis and intermolecular interaction energies. J. Mol. Struct. 2023, 1278, 134948.
https://doi.org/10.1016/j.molstruc.2023.134948

[34]. Hansen, P. E.; Vakili, M.; Kamounah, F. S.; Spanget-Larsen, J. NH stretching frequencies of intramolecularly hydrogen-bonded systems: An experimental and theoretical study. Molecules 2021, 26, 7651.
https://doi.org/10.3390/molecules26247651

[35]. Qiao, L.; Zhang, Y.; Hu, W.; Guo, J.; Cao, W.; Ding, Z.; Guo, Z.; Fan, A.; Song, J.; Huang, J. Synthesis, structural characterization and quantum chemical calculations on 1-(isomeric methylbenzoyl)-3-(4-trifluoromethylphenyl)thioureas. J. Mol. Struct. 2017, 1141, 309-321.
https://doi.org/10.1016/j.molstruc.2017.03.113

[36]. Saeed, A.; Khurshid, A.; Bolte, M.; Fantoni, A. C.; Erben, M. F. Intra- and intermolecular hydrogen bonding and conformation in 1-acyl thioureas: An experimental and theoretical approach on 1-(2-chlorobenzoyl)thiourea. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 143, 59-66.
https://doi.org/10.1016/j.saa.2015.02.042

[37]. Özer, C. K.; Arslan, H.; VanDerveer, D.; Külcü, N. Synthesis and characterization of N-(arylcarbamothioyl)-cyclohexanecarboxamide derivatives: The crystal structure of N-(naphthalen-1-ylcarbamothioyl)cyclohexanecarboxamide. Molecules 2009, 14, 655-666.
https://doi.org/10.3390/molecules14020655

[38]. Mulliken, R. S. Electronic population analysis on LCAO-MO molecular wave functions. I. J. Chem. Phys. 1955, 23, 1833-1840.
https://doi.org/10.1063/1.1740588

[39]. Scrocco, E.; Tomasi, J. Electronic molecular structure, reactivity and intermolecular forces: An euristic interpretation by means of electrostatic molecular potentials. In Advances in Quantum Chemistry Volume 11; Elsevier, 1978; pp. 115-193.
https://doi.org/10.1016/S0065-3276(08)60236-1

[40]. Toro-Labbé, A. Theoretical aspects of chemical reactivity; Elsevier Science: London, England, 2007.

[41]. Pearson, R. G. Chemical hardness and density functional theory. J. Chem. Sci. (Bangalore) 2005, 117, 369-377.
https://doi.org/10.1007/BF02708340

[42]. Xu, Y.; Chu, Q.; Chen, D.; Fuentes, A. HOMO-LUMO gaps and molecular structures of polycyclic aromatic hydrocarbons in soot formation. Front. Mech. Eng. 2021, 7.
https://doi.org/10.3389/fmech.2021.744001

[43]. Fleming, I. Molecular orbitals and organic chemical reactions; Wiley, New York, 2010.
https://doi.org/10.1002/9780470689493

[44]. Türker, L. Interaction of TNT and aluminum - A DFT treatment. Z. Anorg. Allg. Chem. 2015, 641, 408-413.
https://doi.org/10.1002/zaac.201400436

[45]. Gökalp, F. A theoretical investigation of TNT in different phases by using DFT. Turkish Computational and Theoretical Chemistry 2019, 3, 1-4.
https://doi.org/10.33435/tcandtc.455731

[46]. Miar, M.; Shiroudi, A.; Pourshamsian, K.; Oliaey, A. R.; Hatamjafari, F. Theoretical investigations on the HOMO-LUMO gap and global reactivity descriptor studies, natural bond orbital, and nucleus-independent chemical shifts analyses of 3-phenylbenzo[d]thiazole-2(3H)-imine and its para-substituted derivatives: Solvent and substituent effects. J. Chem. Res. 2021, 45, 147-158.
https://doi.org/10.1177/1747519820932091

[47]. Jean-Pierre, L. The role and the status of thermodynamics in quantum chemistry calculations. In Thermodynamics - Interaction Studies - Solids, Liquids and Gases; InTech, ISBN: 978-953-307-563-1, 2011.
https://doi.org/10.5772/23465

TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).